NSW INDEPENDENT SCHOOLS

2010 Higher School Certificate Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 120

- Attempt Questions 1 − 8
- All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0

Marks

2

2

3

Marks

2

- (a) Find $\int \left(e^x + e^{-\frac{x}{2}}\right)^2 dx$.
- (b) Use the substitution $u = 1 + \sin^2 x$ to find $\int \frac{\sin 2x}{\sqrt{1 + \sin^2 x}} dx$.
- (c) Evaluate in simplest exact form $\int_0^{\frac{\pi}{4}} \frac{\sec x + \tan x}{\cos x} dx$.
- (d) Evaluate in simplest exact form $\int_0^4 \frac{x-9}{(x+1)(x^2+9)} dx$.
- (e) Use the substitution $t = \tan \frac{x}{2}$ to evaluate in simplest exact form $\int_0^{\frac{\pi}{2}} \frac{1}{3 \cos x 2\sin x} dx.$

Question 2	Begin a new booklet
------------	---------------------

- (a) If z=3-i and w=1+2i, find in the form a+ib, where a and b are real, the values of
- (i) z-2w.
- (ii) $z\overline{w}$.
- (iii) $\frac{z}{w}$.
- (b)(i) Show that $\tan \frac{\pi}{12} = \frac{\sqrt{3} 1}{\sqrt{3} + 1}$.
 - (ii) Express $z = (\sqrt{3} + 1) + (\sqrt{3} 1)i$ in modulus argument form.
 - (iii) Express z^6 in the form a+ib, where a and b are real.
- (c)(i) On an Argand diagram, shade the region where both $|z-1-i| \le \sqrt{2}$ and $0 \le \arg z \le \frac{\pi}{4}$.
- (ii) Find in simplest exact form the area of the shaded region.
- (d)(i) If $z_1 = r(\cos\alpha + i\sin\alpha)$ and $z_2 = r(\cos\beta + i\sin\beta)$ show that $\left|\sqrt{z_1z_2}\right| = r$ and $\arg\left(\sqrt{z_1z_2}\right) = \frac{1}{2}(\alpha + \beta) + n\pi, \quad n = 0, \pm 1, \pm 2, \dots$
 - (ii) If $0 < \alpha < \beta < \frac{\pi}{2}$, show on an Argand diagram the points A, B, C, D and E such that $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ vectors OA, OB, OC represent z_1 , z_2 , $z_1 + z_2$ respectively, and OD, OE represent the two square roots of z_1z_2 .

3

Student name / number

Marks

Question 3 Begin a new booklet

(a) The polynomial $P(x) = x^3 - 6x^2 + 9x + c$ has a double zero. Find any possible values of the real number c.

(b) The graph below shows the curve y = f(x) with asymptotes x = 0 and y = x.

On separate diagrams, sketch the following graphs showing clearly any intercepts and asymptotes:

(i)
$$y = |f(x)|$$
.

(ii)
$$y = f(|x|)$$
.

(iii)
$$y = f(x) - x$$
.

(iv)
$$y = \frac{1}{f(x)}.$$

(c) $P(x) = x^4 - 2x^3 + 3x^2 - 4x + 1$ and the equation P(x) = 0 has roots α , β , γ and δ .

(i) Show that the equation P(x) = 0 has no integer roots.

(ii) Show that P(x) = 0 has a real root between 0 and 1.

(iii) Show that $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = -2$.

(iv) Hence find the number of real roots of the equation P(x) = 0, giving reasons.

Question 4 Begin a new booklet

(a) For the hyperbola $\frac{x^2}{9} - \frac{y^2}{72} = 1$ find

(i) the eccentricity.
(ii) the coordinates of the foci.
(iii) the equations of the directrices.

(b) For the curve $y^3 + 2xy + x^2 + 2 = 0$

(i) show that $\frac{dy}{dx} = \frac{-2(y+x)}{3y^2 + 2x}$.

(ii) find the coordinates of any stationary points on the curve.

(c) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ M_1 $P(x_1, y_1)$ M_2

 $P(x_1, y_1)$ is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, a > b > 0, with asymptotes l_1 and l_2 . M_1 and M_2 are the feet of the perpendiculars from P to l_1 and l_2 respectively.

(i) Show that $PM_1 \times PM_2 = \frac{a^2b^2}{a^2 + b^2}$.

(ii) Show that $\tan \angle M_1 O M_2 = \frac{2ab}{a^2 - b^2}$.

(iii) Hence find the area of ΔPM_1M_2 in terms of a and b.

Question 5 Begin a new booklet

- (a) The numerals 1, 2, 4, 5, 7, 8 are marked one on each side of three counters so that the sum of the numerals on any particular counter is 9. The counters are drawn at random one-by-one from a box, each counter being tossed after it is drawn, then with the uppermost faces unchanged, placed side-by-side on a table (in the order in which they were drawn) to form a three-digit number.
 - (i) Show that the probability the three-digit number formed is a multiple of 3 is $\frac{1}{4}$.
 - (ii) If the random trial described above is performed several times, find the probability the second three-digit multiple of 3 occurs on the 5th trial.

Ouestion 6

(a)

Begin a new booklet

P is a variable point on the curve $y = e^{-x^2}$. Find the minimum value of OP^2 .

(b) Use Mathematical Induction to show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$ for all positive integers $n \ge 2$.

- (c) A particle of mass m kg falls from rest in a medium where the resistance to motion is proportional to the square of its speed and its terminal velocity is 20 ms^{-1} . The value of g, the acceleration due to gravity, is 10 ms^{-2} . At time t seconds, the particle has fallen x metres and acquired a velocity y ms⁻¹.
 - (i) Explain why $\ddot{x} = \frac{1}{40}(400 v^2)$.
 - (ii) Find t as a function of ν by integration, then show $\frac{1}{40}\nu = \frac{\frac{1}{2}(e^{\frac{1}{2}t} e^{-\frac{1}{2}t})}{(e^{\frac{1}{2}t} + e^{-\frac{1}{2}t})}$.
 - (iii) Find x as a function of t.

(b)

In the quadrilateral ABCD shown above, APS, BPQ, CRQ and DRS are the bisectors of the vertex angles at A, B, C and D respectively.

(i) Show that PQRS is a cyclic quadrilateral.

2

Marks

2

2

(ii) If ABCD is a trapezium, deduce that one of the diagonals of PQRS is a diameter of the circle through P, Q, R and S.

(c)

(ii) Show that $\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)$.

The base of a solid is the shaded region between the circle $x^2 + y^2 = 1$ and the ellipse $\frac{x^2}{4} + y^2 = 1$ for $x \ge 0$. Vertical cross-sections taken parallel to the x-axis are rectangles with heights equal to the souares of their base lengths.

(i) Show that the volume V of the solid is given by $V = \int_{-1}^{1} (1 - y^2)^{\frac{1}{2}} dy$.

2

(iii) Use the substitution $y = \sin u$ and the result from (ii) to find the value of V.

3

2

Student name / number

Marks

3

1

Ouestion 7

Begin a new booklet

(a)

P is the point $(2at, at^2)$, 0 < t < 1, on the parabola $x^2 = 4ay$ with focus S. The normal to the parabola at P makes an angle θ with the vertical through P, while the focal chord PS makes an angle α with the vertical.

(i) Explain why $\tan \theta = t$ and show that $\alpha = 2\theta$.

(ii) If l is the focal distance PS, show that $l\cos^2\theta = a$.

- (b) A particle P of mass m is travelling in a horizontal circle with constant angular velocity ω around the inside of a parabolic bowl of focal length a, formed by rotating the arc of the above parabola which lies below the focus around the y-axis. The particle P is suspended from the focus S of the parabola by a string of length l. The tension in the string is T and the surface of the bowl exerts a force N on the particle.
- (i) If the normal to the surface at P makes an angle θ with the vertical, using the result from 7(a)(i), explain why $T\cos 2\theta + N\cos \theta = mg$

and $2T\cos\theta + N = 2ml\cos\theta \omega^2$

- (ii) Using 7(a)(ii), show that $T = 2ma\omega^2 mg$, and find N in terms of m, l, a, g and ω^2 .
- (iii) Deduce that $\frac{g}{2a} \le \omega^2 \le \frac{g}{2a-l}$.
- (c) For positive real numbers $a, b, c, a_1, a_2, ..., a_n$:
 - (i) Show that $a + \frac{1}{a} \ge 2$.
 - (ii) Hence show that $\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right) \ge 4$ and $\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$.
 - (iii) Show that $\left(a_1 + a_2 + ... + a_n\right) \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n}\right) \ge n^2$.

1

Student name / number

(a) $I_n = \int_{-1}^{1} x^n \ln(1+x) dx$, n = 0, 1, 2, ...

(i) Show that $\int \ln(1+x) dx = (1+x)\ln(1+x) - x + c$.

(ii) Show that $(n+1)I_n = 2\ln 2 - \frac{1}{n+1} - nI_{n-1}$, n=1,2,...

(iii) Evaluate $3I_2$ and $4I_3$.

(iv) Show that $(n+1)I_n = \begin{bmatrix} \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n+1} & n \text{ odd} \\ 2\ln 2 - (\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1}) & n \text{ even} \end{bmatrix}$

(b) Consider the function $y = x^n \ln(1+x)$, $x \ge 0$ for n a positive integer.

(i) Show that for x > 0, the function is increasing and its graph is concave up.

(ii) 2

The tangent at $P(1, \ln 2)$ on the curve $y = x^n \ln(1+x)$ meets the x-axis at T.

Considering the area of the shaded region, show that if $I_n = \int_0^1 x^n \ln(1+x) dx$,

then
$$(n+1)I_n > \frac{(1+\frac{1}{n})(\ln 2)^2}{\frac{1}{n}+2\ln 2}$$
.

(iii) Hence, using 8(a), show that for even n > 0, $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1} < \frac{3}{2} \ln 2$.

(iv) Deduce that for all positive integers n, $\frac{1}{2} \le \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \cdot \frac{1}{n} < \frac{3}{2} \ln 2$.

Independent Trial HSC 2010 Mathematics Extension 2 Marking Guidelines

Ouestion 1

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• rearranges integrand into appropriate sum of terms	1
• finds primitive	1

Answer

$$\int \left(e^x + e^{-\frac{x}{2}}\right)^2 dx = \int \left(e^{2x} + 2e^{\frac{x}{2}} + e^{-x}\right) dx$$
$$= \frac{1}{2}e^{2x} + 4e^{\frac{x}{2}} - e^{-x} + c$$

b. Outcomes assessed: HE6

Marking Guidelines

Marking Guitelines		
	Criteria	Marks
	• performs substitution to write integral in terms of u	1
	• writes primitive in terms of u then in terms of x	1

Answer

$$u = 1 + \sin^2 x$$

$$du = 2\sin x \cos x \, dx$$

$$= \sin 2x \, dx$$

$$\int \frac{\sin 2x}{\sqrt{1 + \sin^2 x}} \, dx = \int \frac{1}{\sqrt{u}} \, du$$

$$= 2\sqrt{u} + c$$

$$= 2\sqrt{1 + \sin^2 x} + c$$

c. Outcomes assessed: H8

Marking Guidelines

Marking Guidennes	
Criteria	Marks
rearranges integrand into appropriate form	1
writes primitive function	1
• evaluates in simplest surd form	1

Answer

بالاجي

$$\int_0^{\frac{\pi}{4}} \frac{\sec x + \tan x}{\cos x} dx = \int_0^{\frac{\pi}{4}} \left(\sec^2 x + \sec x \tan x \right) dx$$
$$= \left[\tan x + \sec x \right]_0^{\frac{\pi}{4}}$$
$$= \tan \frac{\pi}{4} - \tan 0 + \sec \frac{\pi}{4} - \sec 0$$
$$= \sqrt{2}$$

1d. Outcomes assessed: E8

Marking Guidelines

Criteria	Marks
• expresses integrand as sum of partial fractions	1
• finds the primitive function	. 1
• substitutes limits	1
• uses log laws to simplify	1

1d Answer

Let
$$\frac{x-9}{(x+1)(x^2+9)} \equiv \frac{a}{(x+1)} + \frac{bx+c}{(x^2+9)}$$
 a, b, c constant

Then
$$x-9 = a(x^2+9) + (bx+c)(x+1)$$

put $x = -1$: $-10 = 10a$ $\therefore a = -1$
put $x = 0$: $-9 = 9a + c$ $\therefore c = 0$
equate coeffs of x : $1 = b + c$ $\therefore b = 1$

$$\int_{0}^{4} \frac{x-9}{(x+1)(x^{2}+9)} dx = \int_{0}^{4} \left(\frac{-1}{x+1} + \frac{x}{x^{2}+9}\right) dx$$
$$= \left[-\ln(x+1) + \frac{1}{2}\ln(x^{2}+9)\right]_{0}^{4}$$
$$= -\ln 5 + \frac{1}{2}(\ln 25 - \ln 9)$$
$$= -\ln 5 + \ln 5 - \ln 3$$
$$= -\ln 3$$

e. Outcomes assessed: HE6

Marking Guidelines

Criteria	Marks
• writes dx in terms of dt and converts x limits to t limits	1
• uses t-formulae to write given integrand in terms of t	1
simplifies and rearranges new integrand to obtain primitive function	1
• evaluates integral in simplest exact form	1

Answer

$$t = \tan \frac{x}{2}$$

$$dt = \frac{1}{2} \sec^{2} \frac{x}{2} dx$$

$$dt = \frac{1}{2} \sec^{2} \frac{x}{2} dx$$

$$dt = \frac{1}{2} \sec^{2} \frac{x}{2} dx$$

$$dt = \frac{2}{1+t^{2}} dt$$

$$= \frac{3(1+t^{2}) - (1-t^{2}) - 4t}{1+t^{2}}$$

$$= \frac{2(2t^{2} - 2t + 1)}{1+t^{2}}$$

$$= 2\left\{(t - \frac{1}{2})^{2} + \frac{1}{4}\right\}. \frac{2}{1+t^{2}}$$

$$= \frac{\pi}{2}$$

$$t = 0 \implies t = 0$$

$$t = \frac{\pi}{2} \implies t = 1$$

$$t = \tan^{-1} 1 - \tan^{-1} (-1)$$

$$= \frac{\pi}{4} - (-\frac{\pi}{4})$$

$$= \frac{\pi}{2}$$

Ouestion 2

a. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • writes value of $z-2w$	1
ii • writes value of $z\overline{w}$	_ 1
iii • writes value of $\frac{z}{-}$	1
w	

Answer

$$z=3-i$$
 and $w=1+2i$

i.
$$z-2w=(3-i)-2(1+2i)=1-5i$$

ii.
$$z\overline{w} = (3-i)(1-2i) = 1-7i$$

iii.
$$\frac{z}{w} = \frac{(3-i)(1-2i)}{(1+2i)(1-2i)} = \frac{1-7i}{1^2+2^2} = \frac{1}{5} - \frac{7}{5}i$$

b. Outcomes assessed: H5, E3

Marking Cuidalines

Marking Guidennes		
Criteria	Marks	
i • applies result for tan of a difference	1	
ii • finds the modulus of z	1	
• deduces z has argument $\frac{\pi}{12}$ and writes z in modulus argument form	1	
iii • finds the 6 th power in required form	1	

Answer

i.
$$\tan \frac{\pi}{12} = \tan(\frac{\pi}{3} - \frac{\pi}{4}) = \frac{\tan \frac{\pi}{3} - \tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{3} \tan \frac{\pi}{4}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

ii.
$$z = (\sqrt{3} + 1) + (\sqrt{3} - 1)i \implies |z| = \sqrt{8} = 2\sqrt{2}$$
 and $\arg z = \alpha$ where $\tan \alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$, $0 < \alpha < \frac{\pi}{2}$.

$$\therefore z = 2\sqrt{2} \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

iii.
$$z^6 = 2^9 \left(\cos\frac{6\pi}{12} + i\sin\frac{6\pi}{12}\right) = 512i$$

c. Outcomes assessed: P4, E3

Marking Cuidalines

Marking Guidelines	
Criteria	Marks
i • realises region lies inside circle, centre (1, 1) and radius $\sqrt{2}$	1
• sketches region bounded by circle, x-axis and line $y = x$, excluding origin O	1
ii • realises region comprises a right triangle and a quarter circle, finding the area of one part	1
• adds second part to give exact area	1

ii.

Answer i.

Area is
$$\frac{1}{2}\sqrt{2}.\sqrt{2} + \frac{1}{4}\pi(\sqrt{2})^2 = 1 + \frac{\pi}{2}$$

2d. Outcomes assessed: E3

Marking Guidelines Criteria	Marks
i • uses de Moivre's theorem to write down the product $z_1 z_2$ and deduce that $\sqrt{z_1 z_2} = r$.	1
• deduces the possible values of $\arg(z_1z_2)$	1
ii • shows A, B, C on an Argand diagram, with OACB forming a rhombus.	1
• shows D , E collinear with O and C , and $OA = OB = OD = OE = r$	1

Answer

i.
$$z_1 = r\left(\cos\alpha + i\sin\alpha\right)$$
, $z_2 = r\left(\cos\beta + i\sin\beta\right)$
Using de Moivre's theorem, $z_1z_2 = r^2\left(\cos(\alpha + \beta) + i\sin(\alpha + \beta)\right)$
 $= r^2\left\{\cos\left(\frac{\alpha + \beta + 2n\pi}{2}\right) + i\sin\left(\frac{\alpha + \beta + 2n\pi}{2}\right)\right\}^2$
where $n = 0, \pm 1, \pm 2, ...$
Now $\left|z_1z_2\right| = r^2$, hence $\left|\sqrt{z_1z_2}\right| = r$. Also $\arg\left(\sqrt{z_1z_2}\right) = \frac{1}{2}(\alpha + \beta) + n\pi$, $n = 0, \pm 1, \pm 2, ...$

Ouestion 3

a. Outcomes assessed: E4

Marking Guidelines

maning Guidennes		
Criteria	Marks	
• solves $P'(x) = 0$ to find the possible double zeros of $P(x)$	1	
• finds c if 3 is a double zero of $P(x)$	1	
• finds c if 1 is a double zero of $P(x)$		

Answer

$$P(x) = x^{3} - 6x^{2} + 9x + c$$

$$P'(x) = 3x^{2} - 12x + 9$$

$$= 3(x - 3)(x - 1)$$

$$\therefore P'(x) = 0 \text{ for } x = 3 \text{ or } x = 1$$

$$P'(3) = P(3) = 0 \Leftrightarrow 27 - 54 + 27 + c = 0 \Leftrightarrow c = 0$$
and
$$P'(1) = P(1) = 0 \Leftrightarrow 1 - 6 + 9 + c = 0 \Leftrightarrow c = -4$$

$$P(x) \text{ has a double zero if and only if } c = 0 \text{ or } c = -4.$$

3b. Outcomes assessed: E6

Marking Guidennes	
Criteria	Marks
i • reflects section of curve below x-axis in x-axis, showing asymptote as $x \to -\infty$	1
ii • reflects branch of curve to right of y-axis in y-axis, showing asymptote as $x \to -\infty$	1 1
iii • shows first quadrant branch through (1, 1) with x- and y-axes as asymptotes	1
• shows second quadrant branch through (-1,1) with x- and y-axes as asymptotes	
iv • shows first quadrant branch with turning point, x-axis as asymptote and origin excluded	
 shows second and third quadrant branches with asymptotes and behaviour near origin 	1

Answer

i.

ii.

iii.

iv.

3c. Outcomes assessed: E2, E3, E4

Marking Guidelines

Criteria	Marks
i • tests the only possibilities and deduces there are no integer roots	1
ii • notes that $P(x)$ is continuous and shows $P(0)$ and $P(1)$ have opposite signs	1
iii • expresses sum of squares in terms of sums of products of roots taken one or two at a time.	1
• uses the relationships between roots and coefficients to evaluate the sum of squares	1
iv • explains why there must be at least two non-real roots	1
• deduces that the fourth root cannot be non-real and hence that there are exactly 2 real roots	1

Answer

$$P(x) = x^4 - 2x^3 + 3x^2 - 4x + 1$$
. α , β , γ and δ are roots of $P(x) = 0$

- i. Only possible integer roots are ± 1 . But $P(1) = -1 \neq 0$ and $P(-1) = 11 \neq 0$. Hence there are no integer roots.
- ii. P(x) is a continuous, real function and P(0) = 1 > 0 while P(1) = -1 < 0. Hence, considering the graph of y = P(x), there is a real root of P(x) = 0 between 0 and 1.

iii.
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta) = 2^2 - 2 \times 3 = -2$$

iv. Since $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = -2$, at least one of these squares must be negative. Hence P(x) = 0 has a non-real root. Then its complex conjugate is a second non-real root, since the coefficients of P(x) are real. We know there is a real root between 0 and 1. Since the non-real roots come in complex conjugate pairs, the remaining fourth root cannot be non-real. Hence the equation P(x) = 0 has two real roots and two non-real roots.

Question 4

a. Outcomes assessed: £4

Marking Guidelines

Training Guidelines	
Criteria	Marks
i • finds e	1
ii • writes the coordinates of both foci	1
iii • writes the equations of both directrices	1

Answer

i.
$$\frac{x^2}{9} - \frac{y^2}{72} = 1$$
 $b^2 = a^2(e^2 - 1) \implies e^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{72}{9} = 9$ $\therefore e = 3$

- ii. Foci have coordinates (9,0) and (-9,0)
- iii. Directrices have equations x = 1 and x = -1

4b. Outcomes assessed: E6

Marking Guidelines

Marking Guidennes	
Criteria	Marks
i • derives implicitly with respect to x	1
• rearranges to obtain required expression for the derivative	1
ii • finds an equation for the x coordinate of any stationary point	
• factors the cubic expression	1 1
 notes quadratic factor has negative discriminant and writes coordinates of stationary point 	

Answer

c. Outcomes assessed: E3

Marking Guidelines

Marking Guidennes	
Criteria	Marks
i • writes equations of asymptotes in general form	1
• writes the product of distances from P to the asymptotes	1
simplifies the product using the equation of the hyperbola	1
ii • writes and simplifies expression for tangent of angle using the gradients of the asymptotes	1
iii • finds area in terms of a, b, and sine of angle between asymptotes	1
• uses expression for tan angle and Pythagorean triad to express sine angle in terms of a, b	1
• writes area of triangle in terms of a, b	1

Answer

 l_1 , l_2 have equations bx - ay = 0, bx + ay = 0 respectively.

i.
$$PM_1 \times PM_2 = \frac{\left|bx_1 - ay_1\right|}{\sqrt{b^2 + a^2}} \times \frac{\left|bx_1 + ay_1\right|}{\sqrt{b^2 + a^2}}$$
 ii. $\tan \angle M_1 OM_2 = \left|\frac{\frac{b}{a} - (-\frac{b}{a})}{1 + \frac{b}{a}(-\frac{b}{a})}\right|$

$$= \frac{\left|b^2x_1^2 - a^2y_1^2\right|}{b^2 + a^2}$$

$$\therefore PM_1 \times PM_2 = \frac{a^2b^2}{a^2 + b^2} \cdot \left|\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2}\right| = \frac{a^2b^2}{a^2 + b^2}$$

$$= \frac{2ab}{a^2 - b^2}$$

$$= \frac{2ab}{a^2 - b^2}$$

since P on the hyperbola $\Rightarrow \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$.

since a > b > 0.

iii. Area
$$\Delta PM_1M_2 = \frac{1}{2}PM_1 \times PM_2 \sin(180^\circ - \angle M_1OM_2) = \frac{a^2b^2}{2(a^2+b^2)}\sin(\angle M_1OM_2)$$

$$2ab \boxed{\frac{a^2 + b^2}{a^2 - b^2}} \qquad \tan \theta = \frac{2ab}{a^2 - b^2} \Rightarrow \sin \theta = \frac{2ab}{a^2 + b^2} \qquad \therefore \text{ Area of } \Delta PM_1M_2 \text{ is } \frac{a^3b^3}{\left(a^2 + b^2\right)^2}$$

Ouestion 5

a. Outcomes assessed: HE3

Marking Guidelines

Warking Guidennes	
Criteria	Marks
i • counts possible 3-digit numbers	1
• counts multiples of 3 and finds required probability	1
ii • uses binomial distribution (or counts possible orders) to write expression for probability	1 1
calculates the probability	ŀ

Answer

- i. There are 6×4×2=48 possible three-digit numbers.
 A number is a multiple of 3 if and only if the sum of its digits is a multiple of 3.
 Hence for the number to be a multiple of 3, the numerals uppermost on the counters must be 1, 4 and 7 or 2, 5 and 8. ∴ there are 3! + 3!=12 multiples of 3.
 - \therefore P(number is a multiple of 3) = $\frac{12}{48} = \frac{1}{4}$
- ii. Consider the outcome of a trial to be a success if the number formed is a multiple of 3, and a failure otherwise. We then have a sequence of identical, independent random trials where the probability of success is $\frac{1}{4}$ and the probability of failure is $\frac{3}{4}$ for each trial.

 $P(2^{nd} success \ on \ 5^{th} trial) = P(exactly \ 1 success \ in \ first \ 4 trials) \times P(success \ on \ 5^{th} trial)$

:.
$$P(2^{nd} success on 5^{th} trial) = {}^{4}C_{1}(\frac{1}{4})^{1}(\frac{3}{4})^{3} \times \frac{1}{4} = \frac{27}{256}$$

b. Outcomes assessed: PE3

Marking Guidelines

Marking Outdennes	
Criteria	Marks
i • uses the angle sum of a quadrilateral to show $\alpha + \beta + \gamma + \delta = 180^{\circ}$	1
applies test for cyclic quadrilateral	1
ii • uses supplementary cointerior angles to show $\angle QPS = 90^{\circ}$ if $AD BC$	1
• shows $\angle RQP = 90^{\circ}$ if $AB DC$	1

Answer

i. Let $\angle A = 2\alpha$, $\angle B = 2\beta$, $\angle C = 2\gamma$, $\angle D = 2\delta$

$$2\alpha + 2\beta + 2\gamma + 2\delta = 360^{\circ} \ (\angle sum \ of \ quad. \ is \ 360^{\circ})$$

$$\therefore \alpha + \beta + \gamma + \delta = 180^{\circ}$$

$$\angle QPS = \angle APB \quad (vert. \ opp. \ \angle's \ are \ equal)$$

$$\therefore \angle QPS = 180^{\circ} - (\alpha + \beta) \ (\angle sum \ of \ \Delta \ is \ 180^{\circ}) \ *$$
Similarly $\angle QRS = 180^{\circ} - (\gamma + \delta)$

$$\therefore \angle QPS + \angle QRS = 360^{\circ} - (\alpha + \beta + \gamma + \delta)$$

$$= 180^{\circ}$$

Hence *PQRS* is a cyclic quadrilateral.

ii. If $AD \parallel BC$, then $2\alpha + 2\beta = 180^{\circ}$ (cointerior \angle 's between parallel lines are supplementary) $\alpha + \beta = 90^{\circ}$

Then $\angle QPS = 90^{\circ}$ (from *) and diagonal QS must be a diameter of the circle PQRS. If $AB \parallel DC$, then $2\beta + 2\gamma = 180^{\circ} \Rightarrow \beta + \gamma = 90^{\circ}$ and hence $\angle RQP = 90^{\circ}$ ($\angle sum \ of \ \Delta$ is 180°) and RP is a diameter of the circle.

5c. Outcomes assessed: H5, HE6, E1, E2, E7, E9

Criteria	Marks
i • finds dimensions of vertical, rectangular cross-section and hence volume of slice	1
• takes limiting sum of slice volumes to express V as a definite integral	1
ii • shows $z^n + z^{-n} = 2\cos n\theta$ if $z = \cos \theta + i\sin \theta$ (or $\cos^4 \theta = \frac{1}{4}(1 + \cos 2\theta)^{2}$ *)	1
• uses binomial expansion of $(z^n + z^{-n})^4$ (or expands and simplifies *) to obtain result	1
iii • performs substitution to obtain definite integral in terms of u	1
• finds primitive	1
• substitutes limits to evaluate	1

Answer

i. Rectangular cross-section has base length $2\sqrt{1-y^2} - \sqrt{1-y^2} = \sqrt{1-y^2}$ and height $1-y^2$. Hence typical vertical slice parallel to x-axis has volume $\delta V = (1 - y^2)^{\frac{1}{2}} \delta y$.

$$\therefore V = \lim_{\delta y \to 0} \sum_{y = -1}^{y = 1} (1 - y^2)^{\frac{1}{2}} \, \delta y = \int_{-1}^{1} (1 - y^2)^{\frac{1}{2}} \, dy$$

ii.
$$z = \cos\theta + i\sin\theta \implies z^n + \frac{1}{z^n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta = 2\cos n\theta$$

$$\left(z + \frac{1}{z}\right)^4 = \left(z^4 + \frac{1}{z^4}\right) + 4\left(z^2 + \frac{1}{z^2}\right) + 6 \implies 16\cos^4\theta = 2\cos 4\theta + 8\cos 2\theta + 6$$

$$\therefore \cos^4\theta = \frac{1}{2}\left(\cos 4\theta + 4\cos 2\theta + 3\right)$$

iii. Using the symmetry of an even function, $V = 2 \left[(1 - y^2)^{\frac{1}{2}} dy \right]$.

$$y = \sin u, \quad -\frac{\pi}{2} \le u \le \frac{\pi}{2}$$

$$V = 2 \int_{0}^{\frac{\pi}{2}} \cos^{4} u \, du$$

$$dy = \cos u \, du$$

$$= \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \left(\cos 4u + 4\cos 2u + 3\right) \, du$$

$$y = 0 \implies u = 0$$

$$y = 1 \implies u = \frac{\pi}{2}$$

$$= \frac{1}{4} \left[\frac{1}{4} \sin 4u + 2\sin 2u + 3u \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{4} \left(0 + 0 + 3\frac{\pi}{2} \right)$$

$$= \frac{3\pi}{8}$$

Ouestion 6

a. Outcomes assessed: H5

Criteria	Marks
• writes OP^2 in terms of x and finds first derivative with respect to x	1
• solves $\frac{d}{dx}(OP^2) = 0$	1
• uses first or second derivative tests to show min. value for $2x^2 = \ln 2$	1
• substitutes to find minimum value	1

Answer

$$P(x, e^{-x^{2}}) \therefore OP^{2} = x^{2} + e^{-2x^{2}} \text{Let } S = x^{2} + e^{-2x^{2}}$$

$$\frac{dS}{dx} = 2x - 4xe^{-2x^{2}}$$

$$= 2x(1 - 2e^{-2x^{2}}) \frac{d^{2}S}{dx^{2}} = 2 - 4(e^{-2x^{2}} - 4x^{2}e^{-2x^{2}})$$

$$= 2x e^{-2x^{2}}(e^{2x^{2}} - 2) = 2e^{-2x^{2}}\left\{e^{2x^{2}} - 2 + 8x^{2}\right\}$$

$$\frac{dS}{dx} = 0 \Rightarrow x = 0 \text{or } e^{2x^{2}} = 2$$

$$2x^{2} = \ln 2 x = 0 \Rightarrow \frac{d^{2}S}{dx^{2}} = -2 < 0 \therefore \text{local max. value}$$

$$\frac{dS}{dx} = 0 \implies x = 0 \quad \text{or} \quad e^{2x^2} = 2$$

$$2x^2 = \ln 2$$

$$\therefore \quad x = 0 \quad \text{or} \quad x = \pm \sqrt{\frac{1}{2} \ln 2}$$

$$x = 0 \quad \Rightarrow \frac{d^2S}{dx^2} = -2 < 0 \quad \therefore \text{local max. value}$$

$$2x^2 = \ln 2 \quad \Rightarrow \frac{d^2S}{dx^2} = 1 \times 4 \ln 2 > 0 \quad \therefore \text{local min. value}$$

Minimum value of OP^2 is $\frac{1}{2} \ln 2 + e^{-\ln 2} = \frac{1}{2} (\ln 2 + 1)$

b. Outcomes assessed: HE2, E9

Marking Guidelines	
Criteria	Marks
• defines a sequence of statements to be tested by Mathematical induction and shows first is true	1
• writes an inequality for the sum of the first $k+1$ terms conditional on the truth of $S(k)$	1
• rearranges the RHS of this inequality into an appropriate form	1
• deduces $S(k+1)$ is true if $S(k)$ is true, and hence $S(n)$ is true for $n=2,3,4,$	1

Answer

Let S(n), n=2, 3, ... be the sequence of statements defined by S(n): $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + ... + \frac{1}{1^2} < 2 - \frac{1}{1^2}$

Consider S(2): $\frac{1}{1^2} + \frac{1}{1^2} = \frac{5}{4} < \frac{6}{4} = 2 - \frac{1}{2}$ Hence S(2) is true.

Consider S(k+1): $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} < 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$ if S(k) is true, using * $=2-\frac{1}{k+1}\left(\frac{k+1}{k}-\frac{1}{k+1}\right)$ $=2-\frac{1}{k+1}\left(1+\frac{1}{k(k+1)}\right)$ since k(k+1) > 0

 \therefore S(k+1) is true if S(k) is true. But S(2) is true, $\therefore S(3)$ is true ... Hence S(n) is true for n=2,3,4,...

6c. Outcomes assessed: H5, E1, E5, E8

Marking Guidelines

Criteria	Marks
i • considers forces on P to explain why $\ddot{x} = 10 - kv^2$ for some constant k	1
• uses the given terminal velocity to evaluate k	1
ii • expresses $\frac{dt}{dv}$ as sum of partial fractions	1
• finds primitive function and uses initial conditions to evaluate constant of integration	1
 rearranges to find required expression for ν 	1
iii • writes v as $\frac{dx}{t}$ then finds primitive function for x in terms of t	1
at	1
• evaluates constant of integration and simplifies expression for x in terms of t	

Answer

By Newton's
$$2^{\text{nd}}$$
 Law, $m\ddot{x} = 10m - mkv^2$
 $\therefore \ddot{x} = 10 - kv^2$

ii.
$$\frac{dv}{dt} = \frac{1}{40}(400 - v^2)$$

$$e' = \frac{20 + v}{20 - v}$$

$$\frac{dt}{dv} = \frac{40}{(20 + v)(20 - v)}$$

$$= \frac{1}{(20 + v)} + \frac{1}{(20 - v)}$$

$$\therefore t = \ln\left(\frac{20 + v}{20 - v}\right) + c$$

$$t = 0$$

$$v = 0$$

$$v = \frac{1}{(20 + v)} + \frac{1}{(20 - v)}$$

$$v = \frac{20(e^{\frac{1}{2}t} - e^{-\frac{1}{2}t})}{(e^{\frac{1}{2}t} - e^{-\frac{1}{2}t})}$$

$$\frac{1}{40}v = \frac{\frac{1}{2}(e^{\frac{1}{2}t} - e^{-\frac{1}{2}t})}{(e^{\frac{1}{2}t} + e^{-\frac{1}{2}t})}$$

iii.
$$\frac{1}{40} \frac{dx}{dt} = \frac{\frac{1}{2} (e^{\frac{1}{2}t} - e^{-\frac{1}{2}t})}{(e^{\frac{1}{2}t} + e^{-\frac{1}{2}t})}$$
 $\therefore \frac{1}{40} x = \ln(e^{\frac{1}{2}t} + e^{-\frac{1}{2}t}) + c_1$ $\therefore \frac{1}{40} x = \ln(e^{\frac{1}{2}t} + e^{-\frac{1}{2}t}) - \ln 2$ $t = 0, \ x = 0 \implies c = -\ln 2$ $x = 40 \ln\left\{\frac{1}{2} (e^{\frac{1}{2}t} + e^{-\frac{1}{2}t})\right\}$

Question 7

a. Outcomes assessed: PE4

Answer

i. The normal at P makes angle θ with the vertical, \therefore tangent at P makes an angle θ with the horizontal.

Hence
$$\tan \theta = \frac{dy}{dx}$$
 at P . But $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt} = \frac{2at}{2a} = t$.
 $\therefore \tan \theta = t$

Also gradient
$$PS = \tan(\frac{\pi}{2} + \alpha) = \frac{a(1 - t^2)}{-2at}$$

$$\therefore -\cot \alpha = -\frac{1 - t^2}{2t}$$

$$\therefore \tan \alpha = \frac{2t}{1 - t^2} = \tan 2\theta \quad \text{and} \quad \alpha = 2\theta$$

ii. PS is equal to the distance from P to the directrix y = -a.

$$\therefore PS = a(1+t^2) = a(1+\tan^2\theta) = a\sec^2\theta$$

$$\therefore l\cos^2\theta = a$$

b. Outcomes assessed: E5

Marking Guidelines

Criteria	Marks
i • shows the forces on P as vectors, and states magnitude and direction of resultant	1
 applies Newton's 2nd Law, resolving vertically and horizontally, to write two equations 	1
 uses trigonometric results to simplify equation from horizontal resolution 	1 1
ii • solves simultaneously and substitutes $l\cos^2\theta = a$ to obtain expression for T	1
• finds appropriate expression for N	1
iii • uses the fact that the tension cannot be negative to find one inequality	1
 uses the fact that the normal reaction cannot be negative to find the second inequality 	$\cdot \mid \frac{1}{1} \mid$

Answer

i.

The tension acts along PS making an angle 2θ with the vertical. The resultant force on particle P is a vector of magnitude $mr\omega^2 = ml\sin 2\theta$. ω^2 directed horizontally toward the centre of the circle of motion.

7bi. (cont)

Using Newton's 2nd Law and resolving vertically and horizontally

vertically:
$$T\cos 2\theta + N\cos \theta = mg$$
 (1) horizontally: $T\sin 2\theta + N\sin \theta = ml\sin 2\theta$. ω^2

 $2T\sin\theta\cos\theta + N\sin\theta = 2ml\sin\theta\cos\theta.\omega^2$

$$2T\cos\theta + N = 2ml\cos\theta.\,\omega^2\tag{2}$$

ii.
$$(2) \times \cos \theta - (1) \Rightarrow T(2\cos^2 \theta - \cos 2\theta) = 2ml\cos^2 \theta \cdot \omega^2 - mg$$

$$T = 2ma\omega^2 - mg$$
 since $l\cos^2\theta = a$ from 7(a)(ii)

Then from (2)
$$N = 2ml\cos\theta \cdot \omega^2 - 2\cos\theta \left(2ma\omega^2 - mg\right)$$

$$= 2m\cos\theta \left\{ g - \omega^2 (2a - l) \right\}$$

$$= 2m\sqrt{\frac{a}{l}} \left\{ g - \omega^2 (2a - l) \right\}$$
 where $2a = l \cdot 2\cos^2\theta = l(1 + \cos 2\theta) \ge l$

iii.
$$T \ge 0 \implies 2ma\omega^2 \ge mg$$
 $\therefore \omega^2 \ge \frac{g}{2a}$. Also $N \ge 0 \implies \omega^2 \left(2a - l\right) \le g$ $\therefore \omega^2 \le \frac{g}{2a - l}$ $\therefore \frac{g}{2a} \le \omega^2 \le \frac{g}{2a - l}$

c. Outcomes assessed: PE3, E9

Marking Guidelines

Warking Guidennes		
Criteria	Marks	
i • use the fact that the square of a real number is non-negative to prove the result	1	
ii ◆ expands the given binomial product then uses the result from i.	1	
• expands the trinomial product then uses the result from i.	1	
iii • expands and regroups into $n \times 1$ plus a sum of terms of the form (number + reciprocal)	1	
• counts the terms in the sum and applies the inequality from i. to obtain result		

Answer

i.
$$\left(a + \frac{1}{a}\right)^2 = \left(a - \frac{1}{a}\right)^2 + 4 \ge 4$$
, since $\left(a - \frac{1}{a}\right)$ real $\Rightarrow \left(a - \frac{1}{a}\right)^2 \ge 0$. $\therefore \left(a + \frac{1}{a}\right) \ge 2$ for $a > 0$.

ii.
$$(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)=1+1+\frac{a}{b}+\frac{b}{a}=2+\left(\frac{a}{b}+\frac{b}{a}\right)\geq 4$$
, using i. with $a\to\frac{a}{b}$

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+1+1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\geq 3+3\times 2=9$$

iii.
$$(a_1 + a_2 + ... + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right) = \sum_{i=1}^n \frac{a_i}{a_i} + \sum_{\substack{i=1 \ i \neq i}}^n \left(\frac{a_i}{a_j} + \frac{a_j}{a_i} \right) = n \times 1 + \sum_{\substack{i=1 \ i \neq i}}^n \left(\frac{a_i}{a_j} + \frac{a_j}{a_i} \right)$$

There are ${}^{n}C_{2}$ ways of selecting two different integers from 1, 2, 3, ..., n

Hence there are ${}^{n}C_{2}$ terms of the form $\frac{a_{i}}{a_{i}} + \frac{a_{j}}{a_{i}}$ where i < j.

$$\therefore \left(a_1 + a_2 + \dots + a_n\right) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge n + {^nC_2} \times 2 = n + n(n-1) = n^2$$

Ouestion 8

a. Outcomes assessed: E8

Marking Guidelines	
Criteria	Marks
i • shows the result by differentiation or integration	1
ii • applies the procedure of integration by parts	1
 rearranges and simplifies to obtain required reduction formula 	
iii • applies reduction formula to evaluate 3I₂	1
$ullet$ applies reduction formula to evaluate $4I_3$	1
iv • generalises pattern to write expression for $(n+1)I_n$	1
\bullet simplifies expressions for n odd, n even	1

Answei

i.
$$\frac{d}{dx} \left\{ (1+x) \ln(1+x) - x \right\} = 1 \cdot \ln(1+x) + (1+x) \cdot \frac{1}{1+x} - 1 = \ln(1+x)$$

$$\therefore \int \ln(1+x) \, dx = (1+x)\ln(1+x) - x + c$$

ii.
$$I_n = \int_0^1 x^n \ln(1+x) dx$$
, $n = 0, 1, 2, ...$

$$= \left[x^{n} \left\{ (1+x) \ln(1+x) - x \right\} \right]_{0}^{1} - n \int_{0}^{1} x^{n-1} \left\{ (1+x) \ln(1+x) - x \right\} dx , \quad n = 1, 2, \dots$$

$$=2\ln 2-1-n\int_0^1 \left\{x^{n-1}\ln(1+x)+x^n\ln(1+x)-x^n\right\}dx$$

$$= 2 \ln 2 - 1 - nI_{n-1} - nI_n + \frac{n}{n+1} \left[x^{n+1} \right]_0^1$$

$$= 2\ln 2 - 1 - nI_{n-1} - nI_n + \frac{n}{n+1}$$

$$=2\ln 2 - nI_{n-1} - nI_n - \frac{1}{n+1}$$

$$(n+1)I_n = 2\ln 2 - \frac{1}{n+1} - nI_{n-1}, \quad n=1,2,...$$

iii.
$$I_0 = \int_0^1 \ln(1+x) \, dx = \left[(1+x) \ln(1+x) - x \right]_0^1 = 2 \ln 2 - 1$$

$$3I_2 = 2\ln 2 - \frac{1}{2} - 2I_1 = 2\ln 2 - \frac{1}{2} - \left(2\ln 2 - \frac{1}{2} - I_0\right)$$

$$\therefore 3I_2 = \left(2\ln 2 - \frac{1}{3}\right) - \left(2\ln 2 - \frac{1}{2}\right) + \left(2\ln 2 - 1\right) = 2\ln 2 - \left(1 - \frac{1}{2} + \frac{1}{3}\right) = 2\ln 2 - \frac{5}{6}$$

$$4I_3 = 2\ln 2 - \frac{1}{4} - 3I_2$$

$$\therefore 4I_3 = \left(2\ln 2 - \frac{1}{4}\right) - \left(2\ln 2 - \frac{1}{3}\right) + \left(2\ln 2 - \frac{1}{2}\right) - \left(2\ln 2 - 1\right) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{7}{12}$$

iv.
$$(n+1)I_n = (2\ln 2 - \frac{1}{n+1}) - (2\ln 2 - \frac{1}{n}) + \dots + (-1)^{n-1}(2\ln 2 - \frac{1}{2}) + (-1)^n(2\ln 2 - \frac{1}{1})$$
, with $n+1$ terms.

Hence if n is odd, there is an even number of terms $2 \ln 2 - 2 \ln 2 + 2 \ln 2 - 2 \ln 2 + ... = 0$

and
$$(n+1)I_n = -\frac{1}{n+1} + \frac{1}{n} + \dots - \frac{1}{2} + \frac{1}{1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n+1}$$

Also if *n* is even, there is an odd number of terms $2 \ln 2 - 2 \ln 2 + 2 \ln 2 - 2 \ln 2 + 2 \ln 2 - ... = 2 \ln 2$ and $(n+1)I_n = 2 \ln 2 - \frac{1}{n+1} + \frac{1}{n} + ... + \frac{1}{2} - \frac{1}{1} = 2 \ln 2 - \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{n+1}\right)$.

8b. Outcomes assessed: H5, PE3, E2

Criteria	Marks
i • considers the first derivative to show function is increasing	1
• considers the second derivative to show graph is concave up	1
 ii • finds the gradient of the tangent at P and hence the base length of the shaded triangle • finds the area of the triangle and compares areas to obtain required inequality 	1
iii • shows RHS of inequality in ii. is a sequence decreasing to limiting value $\frac{1}{2} \ln 2$ as $n \to \infty$	1
• uses 8(a)(iv) and this limiting value to deduce required result	1
iv • deduces inequality for even $n > 0$	1
 deduces inequality for odd n>0 	1

Answer

i.
$$y = x^n \ln(1+x)$$
, $x > 0$ for $n = 1, 2, 3, ...$

$$\frac{dy}{dx} = nx^{n-1}\ln(1+x) + \frac{x^n}{1+x} > 0$$
 for $n = 2, 3, ...$, and $\frac{dy}{dx} = \ln(1+x) + \frac{x}{1+x} > 0$ for $n = 1$

and
$$\frac{dy}{dx} = \ln(1+x) + \frac{x}{1+x} > 0$$
 for $n = 1$

Hence function is increasing for all positive integers n.

$$\frac{d^2y}{dx^2} = n(n-1)x^{n-2}\ln(1+x) + \frac{nx^{n-1}}{1+x} + \frac{nx^{n-1}(1+x) - x^n}{(1+x)^2}, \quad n = 2, 3, \dots \text{ and } \frac{d^2y}{dx^2} = \frac{1}{1+x} + \frac{(1+x) - x}{(1+x)^2}, \quad n = 1$$

$$= n(n-1)x^{n-2}\ln(1+x) + \frac{nx^{n-1}}{(1+x)} + \frac{nx^{n-1} + (n-1)x^n}{(1+x)^2} = \frac{2+x}{(1+x)^2}$$

$$> 0 \quad \text{for } x > 0 \text{ and } n = 2, 3, \dots$$

$$> 0 \quad \text{for } x > 0$$

Hence graph is concave up for all positive integers n.

ii. Gradient of tangent PT is $n \ln 2 + \frac{1}{2}$, hence shaded triangle has base b given by $\frac{\ln 2}{h} = n \ln 2 + \frac{1}{2}$

Hence shaded triangle has area $\frac{1}{2} \cdot \frac{\ln 2}{n \ln 2 + \frac{1}{2}} \cdot \ln 2 = \frac{(\ln 2)^2}{2n \ln 2 + 1}$

Comparing the area under the curve between O and P, and the area of the shaded triangle:

$$(n+1)I_n > \frac{(n+1)(\ln 2)^2}{2n\ln 2 + 1} = \frac{(1+\frac{1}{n})(\ln 2)^2}{2\ln 2 + \frac{1}{n}}$$

iii. Using 8(a)(iv), for even n > 0, $2 \ln 2 - \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1}\right) > \frac{(1 + \frac{1}{n})(\ln 2)^2}{2 \ln 2 + \frac{1}{n}}$

Consider the function $f(u) = \frac{(u+1)(\ln 2)^2}{2u \ln 2 + 1}$, u > 0.

Then
$$f'(u) = (\ln 2)^2 \cdot \frac{2u \ln 2 + 1 - (u+1)2 \ln 2}{(2u \ln 2 + 1)^2} = \frac{(\ln 2)^2 (1 - 2 \ln 2)}{(2u \ln 2 + 1)^2} < 0$$

Hence $\frac{(n+1)(\ln 2)^2}{2n\ln 2+1} = \frac{(1+\frac{1}{n})(\ln 2)^2}{2\ln 2+\frac{1}{n}}$, n=1,2,3,... decreases to a limiting value of $\frac{\ln 2}{2}$ as $n\to\infty$.

: for even n > 0, $2 \ln 2 - \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1}\right) > \frac{1}{2} \ln 2$ and hence $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1} < \frac{3}{2} \ln 2$

8b. iv. For even n > 0, $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n} + \frac{1}{n+1} < \frac{3}{2} \ln 2$ and hence $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n} < \frac{3}{2} \ln 2$. Also $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} > 0$ for k > 0, hence $\frac{1}{1} - \frac{1}{2} + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) \ge 1 - \frac{1}{2} = \frac{1}{2}$ $\frac{1}{1} \le \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{n} < \frac{3}{2} \ln 2$ for even n > 0

For n=1, $\frac{1}{2} \le 1 < \frac{3}{2} \ln 2$

If n is odd, $n \ge 3$, then n-1>0 is even and $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{n-1} + \frac{1}{n} < \frac{3}{2} \ln 2$, using iii. Also $\frac{1}{1} - \frac{1}{2} + (\frac{1}{2} - \frac{1}{4}) + \dots + (\frac{1}{n-2} - \frac{1}{n-1}) + \frac{1}{n} > 1 - \frac{1}{2} = \frac{1}{2}$ $\therefore \frac{1}{2} \le \frac{1}{3} - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \dots + \frac{1}{n} < \frac{3}{2} \ln 2$ for odd n > 0

Hence for all positive integers n, $\frac{1}{2} \le \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} + \frac{1}{n} < \frac{3}{2} \ln 2$