NSW INDEPENDENT SCHOOLS

2010 **Higher School Certificate Trial Examination**

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board approved calculators may be
- A table of standard integrals is
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 84

- Attempt Questions 1 7
- All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

Student name / number

2

1

Marks Question 1 Begin a new booklet

- Find the value of k such that (x-2) is a factor of $P(x) = x^3 + 2x + k$.
- Find the acute angle between the lines y = 3x 2 and y = 2 x, giving your 2 answer correct to the nearest degree.
- Find the number of ways in which 3 boys and 3 girls can be arranged in a straight 2 line so that the tallest boy and the tallest girl occupy the two middle positions.
- Find $\frac{d}{dx}(e^x \tan^{-1} x)$.

ABCD is a cyclic quadrilateral. The perpendicular to CD drawn from C meets AB at E. The perpendicular to AB drawn from A meets CD produced at F.

- (i) Give a reason why AECF is a cyclic quadrilateral.
- (ii) Hence show that $BD \parallel EF$. 3

Student name / number

2

2

2

Question 2 Begin a new booklet Marks

(a) Find the value of $\lim_{x\to 0} \frac{\sin 3x}{2x}$.

(b) Solve the inequality $\frac{x+1}{x} > 0$.

(c) Find the coordinates of the point P that divides the interval joining the points A(-2,5) and B(7,-1) internally in the ratio 2:1.

(d) Find $\int \cos^2 2x \ dx$.

(e)

 $P(2t, t^2)$ and $Q(-2(t+\frac{2}{t}), (t+\frac{2}{t})^2)$ are two points on the parabola $x^2 = 4y$. M is the midpoint of PQ.

(i) By considering the gradient of QP, show that QP is normal to the parabola at P.

(ii) Find the equation of the locus of M as P moves on the parabola.

Student name / number	
Diddon namo / namo	

Marks

2

Question 3 Begin a new booklet

(a) Consider the function $f(x) = \frac{3x}{x^2 - 1}$.

(i) Show that the function is odd.

Show that the function is odd.

(ii) Show that the function is decreasing for all values of x in its domain.

(iii) Sketch the graph of the function showing clearly the equations of any asymptotes.

(b)(i) Use the substitution $t = \tan \frac{x}{2}$ to show that $\csc x + \cot x = \cot \frac{x}{2}$.

(ii) Hence evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\csc x + \cot x) dx$, giving the answer in simplest exact form.

(c) At time t hours after an oil spill occurs, a circular oil slick has radius r km, where $r = \sqrt{t+1} - 1$. Find the rate at which the area of the slick is increasing when its radius is 1 km, giving your answer correct to 2 decimal places.

Marks

2

Question 4

Begin a new booklet

- (a) At time t years after observation begins, the number N of birds in a colony is given by $N = 100 + 400 e^{-0.1t}$.
- Sketch the graph of N as a function of t showing clearly the initial population size and the limiting population size.
- (ii) Find the time taken for the population size to fall to half its initial value, giving the answer correct to the nearest year.
- (b) Use the substitution u = x + 1 to find the value of $\int_0^3 \frac{x}{\sqrt{x+1}} dx$.
- (c) Use Mathematical Induction to show that $3^n 2n 1$ is divisible by 4 for all positive integers $n \ge 2$.

0	W	Marks
Ques	tion 5 Begin a new booklet	
(a)	Consider the function $f(x) = 2\cos^{-1}(x-1)$.	
(i)	Find the domain and range of the function.	2
(ii)	Sketch the graph of the function.	1
(iii) Find the equation of the inverse function.	1
(b)	Four people visit a town with four restaurants A, B, C and D. Each person chooses a restaurant at random.	
(i)	Find the probability that they all choose different restaurants.	2
(ii)	Find the probability that exactly two of them choose restaurant A.	2
(c)	A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms ⁻¹ and acceleration a ms ⁻² given by $a = x + \frac{3}{2}$. Initially the particle is 5m to the right of O and moving towards O with a speed of 6 ms ⁻¹ .	
(i)	Explain whether the particle is initially speeding up or slowing down.	1
(ii)	Show that $v^2 = x^2 + 3x - 4$.	2

(iii) Find where the particle changes direction.

Student name / number

Student name / number

Question 7

Begin a new booklet

(a)

Question 6

Begin a new booklet

AB is a diameter of a circle with centre O and radius 1 cm. C is a point on the circle such that $\angle ABC = \theta$ radians and the perimeter of the shaded region is 5 cm.

(i) Show that $\theta + \cos \theta - 1.5 = 0$.

2

Marks

(ii) Show that $0.8 < \theta < 0.9$.

(iii) Use one application of Newton's method with an initial value $\theta_0 = 0.85$ to find the next approximation to the value of θ , giving your answer correct to 2 decimal places.

2

A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds it has displacement x metres from a fixed point O on the line, where $x = 4\cos^2 t - 1.$

(i) Show that $\ddot{x} = -4(x-1)$.

2

(ii) Sketch the graph of x as a function of t for $0 \le t \le \pi$, showing clearly the times when the particle passes through O.

7

(iii) For $0 \le t \le \pi$, find the time when the velocity of the particle is increasing most rapidly, and find this maximum rate of increase in the velocity.

(a)

A particle is projected from a point O with speed V ms⁻¹ at an angle α above the horizontal, where $0 < \alpha < \frac{\pi}{2}$. It moves in a vertical plane subject to gravity where the acceleration due to gravity is 10 ms^{-2} . At time t seconds it has horizontal and vertical displacements x metres and y metres respectively from O. At point P where it attains its greatest height the angle of elevation of the particle from O is β radians.

(i) Use integration to show that $x = Vt\cos\alpha$ and $y = Vt\sin\alpha - 5t^2$.

2

Marks

(ii) Show that $\tan \beta = \frac{1}{2} \tan \alpha$.

3

3

3

(iii) If the particle has greatest height 80 m above O at a horizontal distance 120 m from O, find the exact values of α and V.

(b)(i) Write down the binomial expansion of $(1+x)^{2n+1}$.

(ii) Hence show that $\sum_{r=0}^{n} {2n+1 \choose r} = 4^n$.

Independent Trial HSC 2010 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• uses the factor theorem to write an equation for k	1
• solves for k	1

Answer

(x-2) is a factor $\therefore P(2)=0$. Hence 8+4+k=0. $\therefore k=-1$

b. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
ullet writes a numerical expression for $ an heta$	1
• finds the angle to the nearest degree.	1

Answer

The lines have gradients 3 and -1. $\therefore \tan \theta = \frac{3 - (-1)}{1 + 3 \times (-1)} = 2$ $\therefore \theta \approx 63$

c. Outcomes assessed: PE3

Marking Guidelines

Marking Guidennes		
Criteria	Marks	
• realises that the tallest boy and girl can be positioned in two ways	1	
• includes the factor 4! to arrange the remaining students	1	

Answer

• • * * • • Position the tallest boy and girl (*'s) in 2 ways, then the others (•'s) in 4! ways. Hence number of arrangements is $2 \times 4! = 48$.

d. Outcomes assessed: H5, HE4

Marking Guidelines

Trait king Guidennes	
Criteria	Marks
• quotes the derivative of the inverse tan function	1
applies the product rule	1

Answer

$$\frac{d}{dx}\left(e^x \tan^{-1} x\right) = e^x \tan^{-1} x + \frac{e^x}{1+x^2}$$

1e. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • explains why AECF is cyclic	1
ii • quotes property of cyclic quad ABCD to deduce $\angle BDC = \angle BAC$	1
• quotes property of cyclic quad $AECF$ to deduce $\angle EAC = \angle EFC$	1
$ullet$ identifies equal corresponding angles to deduce $BD \parallel EF$	

Answer

- i. In quadrilateral AECF, opposite interior angles at A and C are supplementary. Hence AECF is cyclic.
- ii. ∠BDC = ∠BAC (∠'s subtended at the circumference of circle ABCD by same arc BC are equal)
 ∠EAC = ∠EFC (∠'s subtended at the circumference of circle AECF by same arc EC are equal)
 ∴ ∠BDC = ∠EFC (∠BAC, ∠EAC same angle, since B, E, A collinear)
 ∴ BD || EF (equal corresponding ∠'s on transversal CF)

Question 2

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
rearranges subject of limit into appropriate form	1
applies known limit	1

Answer

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \lim_{x \to 0} \frac{\sin 3x}{3x} = \frac{3}{2} \times 1 = \frac{3}{2}$$

b. Outcomes assessed: P4, PE3

Marking Guidelines

- Criteria	Marks
• finds one inequality for x	1
• correctly combines this with a second inequality to quote all the solutions	1

Answer

Multiplying both sides by x^2 ,

$$\frac{x+1}{x} > 0 \implies x(x+1) > 0 \text{ and } x$$

$$\therefore x < -1 \text{ or } x > 0$$
(by inspection of the graph)

2c. Outcomes assessed: P4

	Marking Guidelines	
	Criteria	Marks
• finds the x coordinate		1
• finds the y coordinate		1

Answer

d. Outcomes assessed: H5

Marking Guidelines

Γ	Criteria	Marks
ţ	• uses an appropriate trigonometric identity	1
1	• finds the primitive function	1

Answer

$$\int \cos^2 2x \ dx = \frac{1}{2} \int \left(1 + \cos 4x \right) \ dx = \frac{1}{2} x + \frac{1}{8} \sin 4x + c$$

e. Outcomes assessed: PE2, PE4

Marking Guidelines		
Criteria	Marks	
i • finds gradient of normal at P	1	
• finds gradient of QP	1	
ii • finds and simplifies x and y coordinates of M in terms of t	1 1	
• eliminates t to find Cartesian equation of locus of M	1	

Answer

i. At the general point
$$(2t, t^2)$$

$$y = t^2 \implies \frac{dy}{dt} = 2t$$

$$x = 2t \implies \frac{dx}{dt} = 2$$

$$\therefore \frac{dy}{dx} = \frac{2t}{2} = t$$

Hence gradient of normal at P is $\frac{-1}{t}$.

Join of
$$P(2t, t^2)$$
 and $Q(-2(t+\frac{2}{t}), (t+\frac{2}{t})^2)$ has gradient

$$\frac{(t+\frac{2}{t})^2 - t^2}{-2(t+\frac{2}{t}) - 2t} = \frac{4+4(\frac{1}{t})^2}{-4t - 4(\frac{1}{t})}$$
$$= \frac{4(t^2+1)}{-4t(t^2+1)}$$
$$= \frac{-1}{t}$$

 $\therefore QP$ is normal to the parabola at P.

$$x = \frac{1}{2} \left\{ 2t - 2\left(t + \frac{2}{t}\right) \right\} = -\frac{2}{t}$$

$$y = \frac{1}{2} \left\{ t^2 + \left(t + \frac{2}{t}\right)^2 \right\} = t^2 + 2 + \frac{2}{t^2}$$

$$\therefore \text{ locus of } M \text{ has equation}$$

$$y = \frac{4}{x^2} + 2 + \frac{1}{2}x^2$$

$$\therefore$$
 locus of M has equation $y = \frac{4}{3} + \frac{1}{3} +$

Question 3

a. Outcomes assessed: P5, H6

Marking Guidelines

Criteria	Marks
i • formally proves f is odd	1
ii • finds $f'(x)$ and considers sign to deduce f is decreasing	ì
iii • shows branches of curve for $ x > 1$ with asymptotes $x = 1$, $x = -1$, $y = 0$	1
• shows branch of curve for $ x < 1$	1

Answer

i.
$$f(-x) = \frac{3(-x)}{(-x)^2 - 1} = -\frac{3x}{x^2 - 1}$$

∴
$$f(-x) = -f(x)$$
 for all $x \neq \pm 1$
∴ $f(x)$ is an odd function.

$$f'(x) = 3 \frac{1 \cdot (x^2 - 1) - x \cdot 2x}{(x^2 - 1)^2}$$
$$= \frac{-3(x^2 + 1)}{(x^2 - 1)^2}$$

 $\therefore f(x)$ is decreasing throughout its domain.

iii.

b. Outcomes assessed: H3, H5

Marking Guidelines

Marks
1
1
1
1
1

Answer

i.
$$t = \tan \frac{x}{2} \implies \csc x + \cot x = \frac{1+t^2}{2t} + \frac{1-t^2}{2t} = \frac{1+t^2+1-t^2}{2t} = \frac{1}{t}$$

$$\therefore \csc x + \cot x = \cot \frac{x}{2}$$

3b ii. Let
$$I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\csc x + \cot x \right) dx$$

$$I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \frac{x}{2} dx \qquad \therefore I = 2 \left\{ \ln \left(\sin \frac{\pi}{4} \right) - \ln \left(\sin \frac{\pi}{6} \right) \right\}$$

$$= 2 \left(\ln \frac{1}{\sqrt{2}} - \ln \frac{1}{2} \right)$$

$$= 2 \left(\ln \left(\sin \frac{x}{2} \right) \right)_{\frac{\pi}{4}}^{\frac{\pi}{2}} \qquad = 2 \ln 2^{\frac{1}{2}}$$

$$= 2 \ln 2$$

c. Outcomes assessed: HE5, HE7

Marking Guidelines	
Criteria	Marks
• writes the area A as a function of t and differentiates	1
• finds either t or $\sqrt{t+1}$ when $r=1$	1
• substitutes for t to find the required rate to stated accuracy, giving units	i

Answer

$$A = \pi \left\{ \sqrt{t+1} - 1 \right\}^{2}$$

$$r = 1 \implies \sqrt{t+1} - 1 = 1$$

$$\frac{dA}{dt} = 2\pi \left\{ \sqrt{t+1} - 1 \right\} \cdot \frac{1}{2} (t+1)^{-\frac{1}{2}}$$

$$r = 1 \implies \sqrt{t+1} - 1 = 1$$

$$\sqrt{t+1} = 2$$

$$\therefore \frac{dA}{dt} = \pi \frac{2 - 1}{2} = \frac{\pi}{2}$$
Ans. 1.57 km/h
$$\therefore \frac{dA}{dt} = \pi \frac{2 - 1}{2} = \frac{\pi}{2}$$

Question 4

a. Outcomes assessed: H3, HE3

Marking Guidelines		
Criteria		Marks
i • shows vertical intercept 500 with decreasing function		1
• shows curve approaching asymptote $N = 100$ as $t \to \infty$,	1
ii • finds value of $e^{-0.1t}$		1
• solves equation for t		_

Answer

i.
$$N = 100 + 400 e^{-0.1t}$$

 $t = 0 \implies N = 500 \text{ and } t \to \infty \implies N \to 100$

$$\therefore t = -10 \ln \frac{3}{8} \approx 9 \cdot 8$$

Ans. 10 years (to the nearest year)

4b. Outcomes assessed: HE6

Marking Guidelines	
Criteria	Marks
• writes integral in terms of u	1
• rearranges integrand into sum of index expressions in u	1
• finds primitive function	1
• evaluates	

Answer

$$u = x + 1$$

$$du = dx$$

$$\int_{0}^{3} \frac{x}{\sqrt{x + 1}} dx = \int_{1}^{4} \frac{u - 1}{\sqrt{u}} du$$

$$x = 0 \implies u = 1$$

$$x = 3 \implies u = 4$$

$$= \int_{1}^{4} \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}}\right) du$$

$$= \left[\frac{2}{3}u^{\frac{1}{2}} - 2u^{\frac{1}{2}}\right]_{1}^{4}$$

$$= \frac{2}{3}(4^{\frac{1}{2}} - 1) - 2(4^{\frac{1}{2}} - 1)$$

$$= 2\frac{2}{3}$$

c. Outcomes assessed: HE2

Marking Guidelines	
Criteria	Marks
• defines an appropriate sequence of statements to be tested by Mathematical Induction	1
• verifies that the first statement is true	1
\bullet shows that the truth of the k^{th} statement implies the truth of the next statement in the sequence	1
• completes the process of Mathematical Induction	1

Answer

Let S(n), n=2, 3, 4, ... be the sequence of statements defined by S(n): $3^n-2n-1=4I$ for some integer I. Consider S(2): $3^2 - 2 \times 2 - 1 = 4 \times 1$ Hence S(2) is true, If S(k) is true, $k \ge 2$, $3^k - 2k - 1 = 4I$ for some integer I. Consider S(k+1): $3^{k+1} - 2(k+1) - 1 = 3\{3^k - 2k - 1\} + 4k$ $= 3 \times 4I + 4k$ if S(k) is true, using * = 4(3I + k)

where (3I + k) is an integer.

Hence if S(k) is true, then S(k+1) is true. But S(2) is true, hence S(3) is true and then S(4) is true and so on. $\therefore S(n)$ is true, ie. $3^n - 2n - 1$ is divisible by 4, for all positive integers $n \ge 2$.

Question 5

a. Outcomes assessed: HE4

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • finds domain	1
• finds range	1
ii • sketches curve with correct shape, position and intercepts on the coordinate axes	1
iii • finds the equation of the inverse function	1

Answer

i.
$$f(x) = 2\cos^{-1}(x-1)$$

$$-1 \le x - 1 \le 1$$

and

$$0 \le \cos^{-1}(x-1) \le \pi$$

$$\therefore$$
 Domain: $\{x: 0 \le x \le 2\}$

Range:
$$\{y: 0 \le y \le 2\pi\}$$

ii.

iii. $0 \le y \le 2\pi$ and

$$y = 2\cos^{-1}(x-1)$$

$$\frac{1}{2}y = \cos^{-1}(x-1)$$

$$\cos(\frac{1}{2}y) = x - 1$$

$$x = 1 + \cos(\frac{1}{2}y)$$

Hence, interchanging x and y,

$$f^{-1}(x) = 1 + \cos(\frac{1}{2}x), \quad 0 \le x \le 2\pi$$

b. Outcomes assessed: H5, HE3

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • recognises that there are 4! ways for 4 people to choose different restaurants	1
 divides by 4⁴ to find the probability 	1
ii • recognises the binomial distribution and writes an expression for the probability	
• calculates the probability	

Answer

i.
$$\frac{4!}{4^4} = \frac{4 \times 3 \times 2 \times 1}{4 \times 4 \times 4 \times 4} = \frac{3}{32}$$

ii. Probability that a person chooses restaurant A is $\frac{1}{4}$

$$P(exactly\ 2\ choose\ A) = {}^{4}C_{2}(\frac{1}{4})^{2}(\frac{3}{4})^{2} = \frac{27}{128}$$

c. Outcomes assessed: HE5

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • notes that initially ν , a have opposite signs to deduce that particle is slowing down	1
ii • writes a as a derivative with respect to x and integrates to find expression for v^2	1
 uses initial conditions to evaluate the constant of integration 	
iii • considers $v = 0$ to find that particle changes direction when it reaches $x = 1$	

5c. Answer

i.
$$a = x + \frac{3}{2}$$
. Initially $x = 5$ and $v = -6$

 $\therefore a = \frac{13}{2} > 0$ and $\nu < 0$. Hence particle is slowing down.

ii.
$$\frac{d(\frac{1}{2}v^2)}{dx} = x + \frac{3}{2}$$

$$\frac{1}{2}v^2 = \frac{1}{2}x^2 + \frac{3}{2}x + c_1$$

$$v^2 = x^2 + 3x + c$$

$$x = 5$$

$$v = -6$$

$$\Rightarrow \therefore c = -4$$

$$\therefore v^2 = x^2 + 3x - 4$$

iii. $v = 0 \implies (x+4)(x-1) = 0$

Particle starts at x = 5 and moves left towards O. When particle reaches x = 1, v = 0 and $a = \frac{5}{2} > 0$. Hence particle is instantaneously at rest at x = 1, then moves off to the right and subsequently continues moving right while speeding up (v > 0 and a > 0) Hence only change of direction is at a point 1 m to the right of O.

Question 6

a. Outcomes assessed: H5, PE3, HE1

Marking Guidelines

Criteria	Marks
i • finds BC in terms of θ	1
• uses perimeter in terms of θ to write equation	1
ii • shows that $f(0.8)$, $f(0.9)$ have opposite signs	
ullet notes that f is continuous and makes required deduction about $ heta$	
iii • finds $f'(\theta)$ and substitutes into Newton's formula	
calculates next approximation.	

Answer

Let M be the foot of the perpendicular form O to BC. Then $BC = 2BM = 2\cos\theta$ (radius \perp chord bisects chord)

In $\triangle OBC$, $\angle OCB = \angle OBC = \theta$ (equal \angle 's opp. equal sides) $\therefore \angle AOC = 2\theta$ (ext. \angle is sum of int. opp. \angle 's) Hence $Arc\ AC = 2\theta$

Perimeter is 5 cm $\therefore 2\theta + 2\cos\theta + 2 = 5$ $\theta + \cos\theta - 1 \cdot 5 = 0$

ii. Let $f(\theta) = \theta + \cos \theta - 1.5$.

Then
$$f'(\theta) = 1 - \sin \theta$$
.

We want roots of $f(\theta) = 0$.

f is a continuous, increasing function such that $f(0 \cdot 8) \approx -0.003 < 0$ and $f(0 \cdot 9) \approx 0.022 > 0$ Hence there is exactly one root θ and $0.8 < \theta < 0.9$.

iii. Applying Newton's method with initial approximation $\theta_0 = 0.85$, next approximation is

$$\theta \approx 0.85 - \frac{0.85 + \cos 0.85 - 1.5}{1 - \sin 0.85} \approx 0.85 - \frac{0.009983}{0.248720} \approx 0.81$$

6b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • differentiates once to find \dot{x}	1
 differentiates a second time and rearranges to obtain required result 	1
ii • shows curve with correct position, shape and endpoints	l
• shows intercepts on t axis	1
iii • states time when ν increases most rapidly	1
• states maximum rate of increase	

Answer

i.
$$x = 4\cos^2 t - 1$$

 $= 2(1 + \cos 2t) - 1$
 $= 1 + 2\cos 2t$
 $\dot{x} = -4\sin 2t$
 $\ddot{x} = -8\cos 2t$
 $= -4(2\cos 2t)$
 $= -4(x-1)$
ii. $x = 4\cos^2 t - 1$
3
$$\frac{x}{3} = \frac{4\cos^2 t - 1}{3}$$

iii. v is increasing most rapidly when \ddot{x} takes its greatest positive value, ie. when x takes its least value. This extreme value of \ddot{x} is -4(-1-1)=8 when $t=\frac{\pi}{2}$ and x=-1.

Hence ν increases most rapidly at time $\frac{\pi}{2}$ seconds and this maximum rate of increase is 8 ms^{-2} .

Question 7

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • finds expression for x by integration	1
• finds expression for y by integration	
ii • finds t at greatest height	. 1
• finds x and y in terms of V, α for this t value	1
• uses the gradient of <i>OP</i> to establish result	1
iii • finds $\tan \alpha$ and hence the exact value of α	. 1
• finds the exact value of $\sin \alpha$ and writes an equation for V^2	1
ullet finds the exact value of V	

Answer

i.
$$t = 0 \implies x = y = 0$$
, $\dot{x} = V \cos \alpha$, $\dot{y} = V \sin \alpha$

$$\ddot{x} = 0 \implies \dot{x}$$
 is constant

$$\ddot{y} = -10 \implies \dot{y} = -10t + c_2, \quad c_2 \text{ constant}$$

$$\dot{x} = V \cos \alpha$$

$$t = 0, \ \dot{y} = V \sin \alpha \implies c_2 = V \sin \alpha \qquad \therefore \ \dot{y} = -10t + V \sin \alpha$$

$$\dot{v} = -10t + V \sin \theta$$

$$x = Vt \cos \alpha + c_1$$
, c_1 constant

$$y = -5t^2 + Vt \sin \alpha + c_1$$
, c_1 constant

$$t = 0, x = 0 \implies c_1 = 0$$

$$t=0, \ \gamma=0 \implies c_1=0$$

$$\therefore y = Vt \sin \alpha - 5t^2$$

 $\therefore x = Vt \cos \alpha$

7a ii. At greatest height, $\dot{y} = 0 \Rightarrow 10t = V \sin \alpha$ $\therefore t = \frac{1}{10}V \sin \alpha$

$$\therefore \text{ at point } P, \qquad x = \frac{1}{10} V^2 \sin \alpha \cos \alpha \qquad \text{and} \qquad y = (\frac{1}{10} - \frac{5}{100}) V^2 \sin^2 \alpha = \frac{1}{20} V^2 \sin^2 \alpha$$

Then
$$\tan \beta = gradient \ OP = \frac{\frac{1}{20}V^2 \sin^2 \alpha}{\frac{1}{10}V^2 \sin \alpha \cos \alpha} = \frac{1}{2} \tan \alpha$$

iii.
$$P(120, 80) \Rightarrow \tan \beta = \frac{80}{120} \Rightarrow \frac{1}{2} \tan \alpha = \frac{2}{3}$$
 $\therefore \tan \alpha = \frac{4}{3}$

b. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
i • writes expansion, with or without using sigma notation	1
ii • substitutes $x = 1$	1
• rewrites sum using only binomial coefficients $\binom{2n+1}{r}$, $0 \le r \le n$	1
deduces required result	1

Answer

i.
$$(1+x)^{2n+1} = \sum_{r=0}^{2n+1} {2n+1 \choose r} x^r = {2n+1 \choose 0} + {2n+1 \choose 1} x + \dots + {2n+1 \choose n} x^n + {2n+1 \choose n+1} x^{n+1} + \dots + {2n+1 \choose 2n+1} x^{2n+1}$$

ii. Substituting
$$x = 1$$
, $2^{2n+1} = {2n+1 \choose 0} + {2n+1 \choose 1} + \dots + {2n+1 \choose n} + {2n+1 \choose n+1} + \dots + {2n+1 \choose 2n} + {2n+1 \choose 2n+1}$

$$2^{2n+1} = {2n+1 \choose 0} + {2n+1 \choose 1} + \dots + {2n+1 \choose n} + {2n+1 \choose n} + \dots + {2n+1 \choose 1} + {2n+1 \choose 0}$$

using
$$\binom{2n+1}{k} = \binom{2n+1}{2n+1-k}$$

$$2^{2n+1} = 2\sum_{r=0}^{n} {2n+1 \choose r}$$
$$\therefore \sum_{r=0}^{n} {2n+1 \choose r} = 2^{2n} = 4^{n}$$