## NSW INDEPENDENT SCHOOLS

2010
Higher School Certificate
Trial Examination

# **Mathematics**

#### General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

#### Total marks - 120

- Attempt Questions 1 10
- · All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME: .....

STUDENT NUMBER/NAME: .....

Total marks – 120 Attempt Questions 1 - 10 All questions are of equal value.

Answer the questions on your own paper or writing booklet, if provided. Start each question on a new page.

Marks

## Question 1 (12 marks)

- a) Solve the equation  $e^x = 4$ . Give your answer correct to three significant figures. 2
- Solve  $\frac{3x+4}{x-1} = 2$ .
- (c) Find the gradient of the tangent to the curve  $y = \frac{2}{x}$  at the point (-1, -2).
- (d) Solve |3x-1|=10.
- (e) Sketch the graph of 2x+3y=9, showing the intercepts on both axes.
- (f) Find the exact value of x such that  $\sec x + 1 = 3$  where  $0 \le x \le \frac{\pi}{2}$ .

2

1

1

2

3

#### Ma

Question 2 (12 marks) Start a new writing booklet.

(a) Shade the region in the plane defined by  $y \le 0$  and  $y \ge x^2 + 3x$ 

- (b) Differentiate with respect to x:
  - (i)  $\ln \sqrt{3x^2 1}$ .
  - (ii)  $x\cos 2x$ .
- (c) (i) Find  $\int dt$ .
  - (ii) Find  $\int \frac{4}{(2x-1)^3} dx$ .
  - (iii) Evaluate  $\int_{1}^{e} 2x + \frac{1}{x} dx$ . Leave your answer in exact form.



2

Question 3 (12 marks) Start a new writing booklet.



The line AB has a gradient of  $\frac{2}{3}$ . The point B has coordinates (7, 4).

- (i) Find the equation of AB in the form ax + by + c = 0.
- (ii) Find the shortest distance of the point P(-1, 6) from the line AB.
- (iii) Find the coordinates of A, the point where the line AB intersects with the x-axis.
- (iv) Find the distance AB.
- (v) Find the angle the line AB makes with the positive direction of the x-axis.
- (b) Evaluate  $\sum_{m=2}^{6} 10 m^2$ .

(c) Use the Trapezoidal Rule with 4 subintervals to find an approximation for  $\int_{1}^{3} f(x) dx$  given that

| х    | 1    | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3    |
|------|------|----------------|-----|----------------|------|
| f(x) | 11.2 | 17.8           | 9.3 | 4.1            | 11.6 |

1

2

### Marks

Question 4 (12 marks) Start a new writing booklet.

- (a) Find the common ratio of a geometric series with a first term of 3 and a limiting sum of  $\frac{9}{5}$ .
- (b) Find the values of k for which the expression  $x^2 (k-2)x + (k+13)$  is positive definite.

(c)



NOT TO SCALE

ABC is an isosceles triangle in which AB = AC. E is a point in BA produced. D is a point in AB produced such that BD = BC.

Copy or trace the diagram into your answer booklet showing all given information.

Show, giving reasons, that  $\angle CAE = 4 \angle BDC$ .

2

Question 4 continues.

- 5 -

| Question 4 | (continued) |
|------------|-------------|
|            |             |

- (d) Juan started work at 20 and at the beginning of each month he invested \$150 into a superannuation fund. Interest was paid at 6% p.a. compounded monthly on the investment. Juan retired at 65 after having contributed to the fund for 45 years.
  - (i) How much did Juan contribute to the fund over the 45 years?
  - (ii) How much did Juan's investment amount to after 45 years?
  - (iii) Juan plans to reinvest some of the money into an account which offers 8% p.a. compound interest compounded annually.

    He plans to have \$200 000 at the end of the 10 year investment period.

    How much does Juan need to reinvest to achieve this amount.

    (Give your answer to the nearest \$10).

#### **End of Question 4**

| STUDENT NUMBER/NAME: |  |
|----------------------|--|
| DIODENT NOMBENNAME.  |  |

Question 5 (12 marks) Start a new writing booklet.

(a) In the diagram ABC is a triangle in which  $\angle ACB = 30^{\circ}$  and D, E and F lie on the lines BC, BA and AC respectively.

CDEF is a parallelogram with DE = 8 cm and EF = 5 cm.



Let BD = x cm and AF = y cm,

- (i) Show triangles *BDE* and *EFA* are similar.
- (ii) Show that xy = 40.
- (iii) Show that the area, A, of triangle ABC is given by

 $A = 20 + 2x + \frac{50}{x}$ 

(iv) Find the values of x and y which will minimise the area of triangle ABC.

Justify your answer.

Question 5 (continued)

(b) During July the probability that it rains on any day is  $\frac{1}{3}$ .

Find the probability that during a 7 day week

(i) it rains on the 1<sup>st</sup> and 5<sup>th</sup> day.

1

(ii) it rains only on the first 3 days.

there is at least one rainy day.

End of Question 5

Question 5 continues

Marks ·

3

Question 6 (12 marks) Start a new writing booklet.

(a) The diagram shows the region bounded by the curve  $y = e^x$ , the lines x = -1 and x = 2, and the x-axis.



The region is rotated about the x-axis. Find the volume of the solid of revolution formed. Leave your answer in exact form.

(b) A particle moves in a straight line. At time t seconds, its distance x metres from a fixed point O on the line is given by

$$x = 1 - \cos 2t .$$

- (i) Sketch the graph of x as a function of t for  $0 \le t \le \pi$ .
- (ii) Using your graph, or otherwise, find the times when the particle is at rest and the position of the particle at these times.
- (iii) Find the velocity of the particle when  $t = \frac{\pi}{4}$ .
- (iv) Over which time periods is the particle's velocity greater than 1 m/s?

| Quest | tion 7 ( | (12 marks) Start a new writing booklet.                                                                                                                                                                                           | Mark |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| a)    | (i)      | Differentiate $\sqrt{(2x^2+1)^3}$                                                                                                                                                                                                 | 2    |
| •     | (ii)     | Hence evaluate $2\int_0^2 x\sqrt{2x^2+1} dx$                                                                                                                                                                                      | 2    |
|       |          |                                                                                                                                                                                                                                   |      |
| b)    | The p    | cceleration of a particle moving in a straight line is given by $6-6t \text{ ms}^{-2}$ article starts from a point 2 metres to the right of the origin and moves ds the origin with an initial velocity of $-3 \text{ ms}^{-1}$ . |      |
|       | (i)      | Find an expression for the velocity of the particle in terms of time $t$ .                                                                                                                                                        | 2    |
|       | (ii)     | Find an expression for the displacement of the particle in terms of time $t$ .                                                                                                                                                    | . 2  |
|       | (iii)    | Find when and where the particle comes to rest.                                                                                                                                                                                   | 2    |
|       | (iv)     | Show the particle passes through the origin after 2 second of motion.                                                                                                                                                             | 1    |
|       | (v)      | Show the particle never changes direction.                                                                                                                                                                                        | 1    |

1

#### Marks

Question 8 (12 marks) Start a new writing booklet.

a) Find the equation of the parabola with vertex (1, 2) and focus (1, 4).

b) The Trumpets are building an unusually shaped pool on their country property.



In the diagram, ABCDE, represents the shape of the surface of the pool.

The sector ABD has centre D and  $\angle ADB = \frac{2\pi}{3}$ .

The points C, D, E lie on a straight line. The arc AB has a length of  $6\pi$  metres. AE = ED = DC = CB.

(i) Show that AD = 9 metres.

ii) Find the length of the BC.

(iii) Find the area of the pool's surface.

1

2

2 .

Question 8 continues

## Question 8 ((continued)

2)



The diagram shows the region bounded by the curves  $y = \sec^2 x$ ,  $y = 2\cot x$  and the coordinate axes.

(i) Verify, by substitution, that the point  $\left(\frac{\pi}{4}, 2\right)$  lies on both  $y = \sec^2 x$  and  $y = 2\cot x$ .

(ii) Differentiate  $ln(\sin x)$ 

iii) Hence, or otherwise, find the exact area of the shaded region.

**End of Question 8** 

2

1

2

2

Marks

2

2

2

Question 9 (12 marks) Start a new writing booklet.

(a) E. coli bacteria is growing on a piece of chicken at a rate proportional to the amount of bacteria present according to the formula

$$N = Ae^{kt}$$

Time t is in minutes. Initially there are 2000 bacteria present on the chicken. After 5 minutes there are 3500 bacteria on the chicken.

- (i) Show that k = 0.112, correct to 3 decimal places.
- (ii) How many bacteria are on the chicken after 1 hour?
- (iii) How long will it take for the number of E. coli bacteria on the chicken to reach 10000? Give answer to the nearest minute.
- (b) Consider the function  $y = (x^2 + 1)e^{-x}$ .

The first derivative and second derivatives of this function are:

$$\frac{dy}{dx} = -e^{-x}(x-1)^2 \quad \text{and} \quad \frac{d^2y}{dx^2} = e^{-x}(x^2 - 4x + 3) \quad \text{(You don't need to show these)}$$

- (i) Find any stationary points and determine their nature.
- (ii) Find the points of inflexion.
- (iii) Sketch the function clearly showing the stationary point, any points of inflexion and any intercepts.

Question 10 (12 marks) Start a new writing booklet.

- For the function  $y = 2\sin 3x + 4\cos 2x$  find p if  $\frac{d^2y}{dx^2} + 4y = p\sin 3x$ .
- b) At the beginning of 2010 the Watersheds borrowed \$ 1 500 000 to purchase a new race horse. The annual interest rate on their loan is 6% pa compounded monthly. The loan is to be repaid by equal annual repayments of \$ 243 161, the first repayment being made at the end of 2010.
  - (i) Show that the Watersheds still owe \$ 1 189 420 after they have made their 2<sup>nd</sup> repayment. (Answer correct to the nearest \$10.)
  - (ii) Let  $A_n$  be the balance owing after the *n*th repayment. Show that  $A_n = 1500000 (1.005)^{12n} - 243161 \left( \frac{1.005^{12n} - 1}{1.005^{12} - 1} \right)$
  - (iii) In which year will the Watersheds pay off their debt?
- c) Pedro is playing in a tennis competition. He is required to play 8 matches and he must win all 8 to win the competition.

  He has a 10% chance of winning the competition.

  In each match his probability of winning decreases by 5% of the preceding match's probability.

What is the probability that he wins the first match?

**End of Paper** 

## NSW INDEPENDENT TRIAL EXAMS – 2010 MATHEMATICS HSC TRIAL EXAMINATION MARKING GUIDELINES

|      |     |                                                | MAKKING GUIDELINES   | 3.6.1                                   |
|------|-----|------------------------------------------------|----------------------|-----------------------------------------|
| Ques |     | Solution                                       |                      | Marks                                   |
| 1    | a)  | $e^x = 4$                                      | •                    | 1 ln 4                                  |
|      |     | $x = \ln 4$                                    |                      | LHIT                                    |
|      |     | x = 1.386294361                                |                      |                                         |
|      |     | =1.39                                          |                      | 1 for sig figures                       |
|      | b)  | $\frac{3x+4}{x-1} = 2$                         |                      |                                         |
|      |     |                                                |                      |                                         |
| L    |     | 3x+4=2(x-1)                                    |                      | 1                                       |
|      |     | 3x+4=2x-2                                      |                      | 1 francouncet engineer                  |
|      |     | $x = -6$ $y = \frac{2}{x}$ $= 2x^{-1}$         |                      | 1 for correct answer                    |
|      | c)  | $y = \frac{2}{}$                               |                      |                                         |
|      |     | x = 1                                          |                      |                                         |
|      |     | =2x                                            |                      |                                         |
| -    |     | $\frac{dy}{dx} = -2x^{-2}$                     |                      | 1 mark for correct                      |
|      |     |                                                |                      | derivative                              |
|      |     | $=-\frac{2}{x^2}$                              |                      |                                         |
|      |     | At $x = -1$                                    |                      |                                         |
|      |     |                                                |                      |                                         |
|      |     | $\frac{dy}{dx} = -\frac{2}{\left(-1\right)^2}$ |                      |                                         |
|      |     | =-2                                            |                      | 1 mark for correct                      |
|      | d)  | 3x-1 =10                                       |                      | gradient                                |
|      | (a) |                                                | 2 1 10               | 1 mark for each correct                 |
|      |     | 3x-1=10 $3x=11$                                | 3x-1 = -10 $3x = -9$ | answer                                  |
|      |     |                                                | 5x = -9 $x = -3$     | (2 marks total)                         |
|      |     | $x = \frac{11}{3}$                             | x = -3               | (2 111111111111111111111111111111111111 |
|      | e)  |                                                |                      |                                         |
|      |     |                                                |                      |                                         |
|      |     |                                                |                      |                                         |
|      |     |                                                |                      | 1 mark for line and one                 |
| 1    |     | 3                                              |                      | correct intercept.                      |
| i i  |     |                                                |                      | 1 mark for 2 <sup>nd</sup> intercept    |
|      |     |                                                |                      | 1 mark for 2 intercept                  |
| ļ    |     |                                                | $4\frac{1}{2}$ * .   | ·                                       |
|      |     |                                                | 2                    |                                         |
|      |     |                                                |                      |                                         |
|      | f)  | $\sec x + 1 = 3$                               |                      |                                         |
|      |     | $\sec x = 2$                                   | ,                    | •                                       |
|      |     | $\cos x = \frac{1}{2}$                         |                      | 1 mark                                  |
|      |     | 1                                              |                      | 1 mark for correct                      |
|      |     | $x = \frac{\pi}{3}$                            |                      | solution                                |
| L    |     | 3                                              |                      |                                         |

| Quest | ion     | Solution                                                                                                                                                             | Marks                                                                                |
|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 2     | a)      | x X                                                                                                                                                                  | mark for parabola and correct intercepts      mark for correct region shaded         |
|       | b)(i)   | $\frac{d}{dx} \ln \sqrt{3x^2 - 1} = \frac{d}{dx} \ln (3x^2 - 1)^{\frac{1}{2}}$ $= \frac{d}{dx} \frac{1}{2} \ln (3x^2 - 1)$ $= \frac{1}{2} \cdot \frac{6x}{3x^2 - 1}$ | 1 attempt a differentiation<br>without applying log rules                            |
|       |         | $=\frac{3x}{3x^2-1}$                                                                                                                                                 | 1 for correct answer                                                                 |
|       | b)(ii)  | $\frac{d}{dx}x\cos 2x = 1.\cos 2x + x - 2\sin 2x$ $= \cos 2x - 2x\sin 2x$                                                                                            | 1 applying product rule 1 for correct answer                                         |
|       | c)(i)   | $= \cos 2x - 2x \sin 2x$ $\int dt = t + c$                                                                                                                           | 1 mark constant required                                                             |
|       | c)(ii)  | $\int \frac{4}{(2x-1)^3} dx = \int 4(2x-1)^{-3} dx$ $= \frac{4(2x-1)^{-2}}{-2 \times 2}$ $= -\frac{1}{(2x-1)^2} + c$                                                 | 1 mark for correct rearrangement and attempted integration 1 mark for correct answer |
|       | c)(iii) | $\int_{1}^{e} 2x + \frac{1}{x} dx = \left[ x^{2} + \ln x \right]_{1}^{e}$ $= \left[ e^{2} + \ln e \right] - \left[ 1 + \ln 1 \right]$ $= e^{2} + 1 - 1$ $= e^{2}$    | 1 mark for correct integration 1 mark for correct substitution 1 mark correct answer |

| 1 mark for correct method  1 mark for correct answer in correct form  1 mark correct substitution into correct formula |
|------------------------------------------------------------------------------------------------------------------------|
| in correct form  1 mark correct substitution into correct formula                                                      |
| 1 mark correct<br>substitution into correct<br>formula                                                                 |
| substitution into correct formula                                                                                      |
| 1 mark correct angular                                                                                                 |
| 1 mark correct angiver                                                                                                 |
| 1 mark correct anarrow                                                                                                 |
| 1 mark correct answer                                                                                                  |
|                                                                                                                        |
|                                                                                                                        |
| 1 mark correct answer                                                                                                  |
|                                                                                                                        |
|                                                                                                                        |
| 1 mark $\sqrt{52}$                                                                                                     |
|                                                                                                                        |
| 1 mark correct answer<br>Degrees or minutes                                                                            |
| 1 mark for series                                                                                                      |
| 1 mark for answer<br>3+4.1)+11.6) 1 mark for correct h                                                                 |
| 1,41),116)                                                                                                             |
| (3+4.1)+11.6 1 mark for correct h                                                                                      |
| _                                                                                                                      |

| Question | Solution                                                                                                                                                                                                                                                    | Marks                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 4 a)     | $S = \frac{a}{1-r}$ $\frac{9}{5} = \frac{3}{1-r}$ $9 - 9r = 15$ $9r = -6$                                                                                                                                                                                   |                                                                          |
|          | $r = -\frac{2}{3}$                                                                                                                                                                                                                                          | 1 mark for correct answe                                                 |
| b)       | $x^{2}-(k-2)x+(k+13)$ Positive Definite V<0 $V=(k-2)^{2}-4(k+13)$ $=k^{2}-4k+4-4k-52$ $=k^{2}-8k-48$                                                                                                                                                        | 1 mark for V                                                             |
|          | =(k-12)(k+4)  (k-12)(k+4) < 0                                                                                                                                                                                                                               | 1 mark for V<0                                                           |
|          | -4 < k < 12                                                                                                                                                                                                                                                 | 1 mark correct answer                                                    |
| (c)      | Let $\angle BDC = x$ VDBC is isosceles since given $BD = BC$ $\angle DCB = x$ (base $\angle$ 's of isosceles VDBC =) $\angle ABC = 2x$ (exterior $\angle$ of VDBC = sum opp. interior $\angle$ 's) $\angle BCA = 2x$ (base $\angle$ 's of isosceles VABC =) | 1 mark for realizing VDBC isosceles & using fact                         |
|          | $\angle EAC = 4x$ (exterior $\angle$ of $VABC = \text{sum opp. interior } \angle s$ )<br>$\therefore \angle CAE = 4\angle BDC$                                                                                                                              | 1 mark correct proof                                                     |
| d)(i)    | Investment = 150×12×45<br>= \$ 81 000                                                                                                                                                                                                                       | 1 mark                                                                   |
| d)(ii)   | $I = 150(1.005)^{540} + 150(1.005)^{539} + \dots + 150(1.005)^{1}$ $= 150(1.005) \left(\frac{1.005^{540} - 1}{1.005 - 1}\right)$ $= $415465.89$                                                                                                             | 1 mark correct interest rate 1 mark correct series 1 mark correct answer |
| d)(iii)  | <u> </u>                                                                                                                                                                                                                                                    | 1 mark                                                                   |
| u)(III)  | $A = \frac{200000}{1.08^{10}}$ $A = 92638.70$                                                                                                                                                                                                               |                                                                          |
|          | A = \$92640                                                                                                                                                                                                                                                 | 1 mark correct answer                                                    |

| Que | estion  | Solution                                                                             | Marks                                            |
|-----|---------|--------------------------------------------------------------------------------------|--------------------------------------------------|
| 5   | a)(i)   | Since CDEF is a parallelogram                                                        |                                                  |
|     |         | DE    CA                                                                             |                                                  |
|     |         | $BC \parallel EF$                                                                    |                                                  |
|     |         | $\angle BDE = 30^{\circ}$ (Matching $\angle BCF$ , $DE \parallel CA$ )               |                                                  |
|     |         | $\angle EFA = 30^{\circ}$ (Matching $\angle BCF$ , BC    EF)                         | 1 mark                                           |
|     | ļ       | In VBDE and VEFA                                                                     |                                                  |
|     |         | $\angle BDE = \angle EFA$ (both = 30°, proven above)                                 |                                                  |
|     |         | $\angle BED = \angle EAF$ (matching $\angle$ 's $DE \parallel CA$ )                  | 1 mark                                           |
|     |         | ∴ VBDE     EFA (equiangular)                                                         |                                                  |
|     | a)(ii)  | Corresponding sides in similar triangles are proportional.                           | 1 mark                                           |
|     |         | $\left  \frac{x}{5} \right  = \frac{8}{y}$                                           | 1 mark                                           |
|     |         |                                                                                      |                                                  |
|     |         | xy = 40                                                                              |                                                  |
|     |         | $y = \frac{40}{}$                                                                    |                                                  |
|     | a)(iii) | $y = \frac{40}{x}$                                                                   |                                                  |
|     | a)(111) | Area $A = \frac{1}{2}ab\sin C$                                                       |                                                  |
|     |         |                                                                                      |                                                  |
|     |         | $= \frac{1}{2}(x+5)(8+y)\sin 30^{\circ}$                                             | 1 mark for correct expression for area           |
|     |         | $= \frac{1}{2} (8x + 40 + xy + 5y) \frac{1}{2}$                                      | involving $x$ and $y$                            |
|     |         | $=\frac{-(6x+40+xy+3y)^{-2}}{2}$                                                     |                                                  |
|     |         | $= \frac{1}{4} \left( 8x + 40 + x \cdot \frac{40}{x} + 5 \cdot \frac{40}{x} \right)$ |                                                  |
|     |         | $= \frac{1}{4} \left( 8x + 40 + 40 + \frac{200}{x} \right)$                          | 1 correct substitution of $y = \frac{40}{x}$ and |
|     |         | 2 20 50                                                                              | , A                                              |
|     |         | $= 2x + 20 + \frac{50}{x}$ $A = 20 + 2x + \frac{50}{x}$                              | simplification                                   |
|     | a)(iv)  | $A = 20 + 2x + \frac{50}{2}$                                                         |                                                  |
|     |         | ~                                                                                    |                                                  |
|     |         | $= 20 + 2x + 50x^{-1}$                                                               |                                                  |
|     |         | $A' = 2 - 50x^{-2}$                                                                  |                                                  |
|     |         | S.P occur when $A' = 0$<br>$0 = 2 - 50x^{-2}$                                        |                                                  |
|     |         |                                                                                      |                                                  |
|     |         | $0 = 2 - \frac{50}{r^2}$                                                             |                                                  |
|     |         |                                                                                      | i e                                              |
|     |         | $\int \frac{50}{x^2} = 2$                                                            |                                                  |
|     |         | $2x^2 = 50$                                                                          |                                                  |
|     |         | $x^2 = 25$                                                                           |                                                  |
|     |         | x = 5 (-5 ignored as x is a length)                                                  | 1 mark for finding $x$                           |
| L   |         |                                                                                      | 1 2 200 200 200                                  |

| Ques | tion            | Solution                                                                                                                         | Marks                     |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 5    | a)(iv)<br>cont. | $A'' = 100x^{-3}$ at $x = 5$                                                                                                     |                           |
|      |                 | $A'' = \frac{100}{5^3} > 0$                                                                                                      | 1 mark for test of Min    |
|      |                 | $\therefore x = 5 \text{ is a minimum} $ $x = 5, y = 8$                                                                          | 1 mark for finding y      |
|      | b)(i)           | $P(E) = \frac{1}{3} \times \frac{1}{3}$                                                                                          |                           |
|      |                 | $=\frac{1}{9}$                                                                                                                   | 1 mark                    |
|      | b)(ii)          | $P(E) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$ |                           |
|      |                 | $=\frac{16}{2187}$                                                                                                               | 1 mark                    |
|      | b)(iii)         | P(at least one rainy day) = 1 - P(all dry days)                                                                                  |                           |
|      |                 | $=1-\left(\frac{2}{3}\right)^7$                                                                                                  | 1 mark for all dry days   |
|      |                 | $=1-\frac{128}{2187}$                                                                                                            |                           |
|      |                 | $=\frac{2059}{2187}$                                                                                                             | 1 mark for correct answer |

| Ques | tion    | Solution                                                                    | Marks                                            |
|------|---------|-----------------------------------------------------------------------------|--------------------------------------------------|
| 6    | a)      | $A = \pi \int_{-1}^{2} \left(e^{x}\right)^{2} dx$                           | 1 mark for correct                               |
|      |         | <b>v</b> −1 · · ·                                                           | integral expression                              |
|      |         | $=\pi\int_{-1}^{2}e^{2x}dx$                                                 |                                                  |
|      |         | $=\pi \left[\frac{e^{2x}}{2}\right]_{1}^{2}$                                | 1 moule for assured                              |
|      |         | $\left[\begin{array}{c} -n\left[\frac{1}{2}\right]_{-1} \end{array}\right]$ | 1 mark for correct integration                   |
|      |         | $=\frac{\pi}{2}(e^4-e^{-2})$ units <sup>3</sup>                             | 1 mark correct answer                            |
|      | b)(i)   | x                                                                           |                                                  |
|      |         | 2                                                                           | 1 mark cos curve                                 |
|      |         |                                                                             | 1 mark period                                    |
|      |         | η/4 μ/2 3μ/4 π                                                              | 1 mark range                                     |
|      |         |                                                                             |                                                  |
| 6    | b)(ii)  | Times when particle is at rest: $t = 0$ , $\frac{\pi}{2}$ , $\pi$ seconds   | 1 mark for times                                 |
|      |         | Position of particle at these times: $x=0, 2, 0$                            | 1 mark for positions                             |
|      | b)(iii) | $x=1-\cos 2t$                                                               |                                                  |
|      |         | $v = 2\sin 2t$                                                              | 1 mark for velocity equation                     |
|      |         | At $t = \frac{\pi}{4}$ .                                                    | oquation                                         |
|      |         |                                                                             |                                                  |
|      |         | $v = 2\sin\left(2\frac{\pi}{4}\right)$                                      | •                                                |
| 1    |         |                                                                             | 1 mark for velocity                              |
|      | b)(iv)  | $v = 2 \text{ ms}^{-1}$ $2 \sin 2t > 1$                                     |                                                  |
|      |         | $2\sin 2t = 1$                                                              |                                                  |
|      |         | $\sin 2t = \frac{1}{2}$                                                     |                                                  |
|      |         | 1 / \                                                                       |                                                  |
|      |         | $2t = \frac{\pi}{6}, \frac{5\pi}{6}$                                        | $\pi$ $5\pi$                                     |
|      |         | $t = \frac{\pi}{12}, \frac{5\pi}{12}$                                       | 1 mark for $t = \frac{\pi}{12}, \frac{5\pi}{12}$ |
|      |         | $\frac{\pi}{12} < t < \frac{5\pi}{12}$                                      | 1 mark for correct solution                      |
| L    |         | Graph may be used.                                                          | SOLUTION                                         |

| Quest | tion    | Solution                                                                                             | Marks                          |
|-------|---------|------------------------------------------------------------------------------------------------------|--------------------------------|
| 7     | a)(i)   | $y = \sqrt{(2x^2 + 1)^3}$                                                                            |                                |
|       |         | 1.                                                                                                   |                                |
|       |         | $=(2x^2+1)^{\frac{3}{2}}$                                                                            | 1 mark correct index form      |
|       |         | $\frac{dy}{dx} = \frac{3}{2}(2x^2 + 1)^{\frac{1}{2}}.4x$                                             |                                |
|       |         |                                                                                                      | 1 mark correct solution        |
|       | 7(")    | $=6x\sqrt{2x^2+1}$                                                                                   |                                |
|       | a)(ii)  | $= 6x\sqrt{2x^2 + 1}$ $2\int_0^2 x\sqrt{2x^2 + 1} \ dx = \frac{1}{3}\int_0^2 6x\sqrt{2x^2 + 1} \ dx$ |                                |
|       |         | $=\frac{1}{3}\bigg[\sqrt{(2x^2+1)^3}\bigg]_0^2$                                                      | 1 mark for correct integration |
|       |         | $=\frac{1}{3}\left[\sqrt{(2(2)^2+1)^3}-\sqrt{(2(0)^2+1)^3}\right]$                                   | Integration                    |
|       |         | $=\frac{1}{3}\left(\sqrt{9^3}-1\right)$                                                              |                                |
|       |         | $=\frac{1}{3}(27-1)$                                                                                 |                                |
|       |         | $=\frac{26}{3}$                                                                                      | 1 mark correct solution        |
| 7     | b)(i)   | a = 6 - 6t                                                                                           |                                |
|       |         | $v = 6t - 3t^2 + c$ $v = -3 \text{ when } t = 0$                                                     | 1 mark for integration         |
|       |         | -3=c                                                                                                 | 1 mark for c and               |
|       |         | $v = 6t - 3t^2 - 3$                                                                                  | expression                     |
| ·     | b)(ii)  | $v = 6t - 3t^2 - 3$                                                                                  |                                |
|       |         | $x = 3t^2 - t^3 - 3t + k$ $x = 2 \text{ when } t = 0$                                                | 1 mark for integration         |
|       |         | 2 = k                                                                                                | 1 mark for k and               |
|       |         | $x = 3t^2 - t^3 - 3t + 2$                                                                            | expression                     |
|       | b)(iii) | Particle comes to rest when $v = 0$                                                                  |                                |
|       |         | $v = 6t - 3t^2 - 3$                                                                                  | ·                              |
|       |         | $0 = -3\left(t^2 - 2t + 1\right)$                                                                    |                                |
|       |         | $0 = (t-1)^2$                                                                                        | 1 mark for t                   |
|       |         | t=1                                                                                                  |                                |
|       |         | $x = 3(1)^2 - (1)^3 - 3(1) + 2$                                                                      | 1 mark for x                   |
|       |         | . =1                                                                                                 | 1 IIIdik ivi x                 |
|       | b)(iv)  | When $t=2$                                                                                           | 1 mark for correct sub         |
|       |         | $x=3(2)^2-(2)^3-3(2)+2$                                                                              | and evaluation                 |
|       |         | =12-8-6+2                                                                                            | ·                              |
|       | b)(v)   | =0                                                                                                   | 1 mark perfect square &        |
|       | 0)(1)   | $v = -3(t-1)^{2}$ $v \le 0  \text{particle never changes direction.}$                                | conclusion                     |
| L     | L       | ν ≥ υ particle never changes direction.                                                              |                                |

| Question | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 3 a)     | Concave up parabola. Focal length 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 mark focal length              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 mark correct solution          |
| b)(i     | $(x-1)^2 = 8(y-2)$ $l = \theta r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|          | $6\pi = \frac{2\pi}{3}r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|          | $3$ $18\pi = 2\pi r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 mark correct substitution into |
|          | r=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arc/length formula               |
|          | AD=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| b)(i     | $\angle BDC = \frac{1}{2} \left( \pi - \frac{2\pi}{3} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
|          | $=\frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
|          | $\cos\frac{\pi}{6} = \frac{4.5}{BC} \qquad \frac{BC}{\sin\frac{\pi}{6}} = \frac{9}{\sin\frac{2\pi}{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|          | $BC = \frac{9}{2} \div \frac{\sqrt{3}}{2}$ OR $BC = 9 \div \frac{\sqrt{3}}{2} \times \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 mark for correct               |
|          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | formula & substitution           |
| ĺ        | $=\frac{9}{\sqrt{3}}$ $=\frac{9}{2}\times\frac{2}{\sqrt{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|          | $=3\sqrt{3}$ $=3\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 mark correct solution          |
| b)(i     | $\begin{bmatrix} A-2\sqrt{2} & \sqrt{3}\sqrt{3}\sin \frac{\pi}{6} & \sqrt{2}\sqrt{3} & \sqrt{3} \\ 2 & \sqrt{3}\cos \frac{\pi}{6} & \sqrt{3}\cos $ | 1 mark area of sector            |
|          | $=\frac{27\sqrt{3}}{2}+27\pi \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 mark area of triangles         |
| c)(i     | $y = \sec\left(\frac{\pi}{4}\right)$ $y = 2\cot\left(\frac{\pi}{4}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|          | $=\frac{1}{\cos^2\left(\frac{\pi}{4}\right)} = 2 \times \frac{1}{\tan\frac{\pi}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|          | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|          | $=\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2} = 2 \times 1$ $= 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 mark for substitution          |
|          | $(\sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | into both equations              |
| c)(i     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
|          | $\frac{dy}{dx} = \frac{\cos x}{\sin x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|          | $dx = \sin x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 mark for correct answer        |
| c)(      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 mark                           |
|          | $= \left[\tan x\right]_0^{\frac{\pi}{4}} + \left[2\ln(\sin x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|          | $= \left[ \left( \tan \frac{\pi}{4} \right) - \tan 0 \right] + \left[ 2 \ln \left( \sin \frac{\pi}{2} \right) - 2 \ln \left( \sin \frac{\pi}{4} \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 mark                           |
|          | $= 1 - 0 + \left( 2 \ln 1 - 2 \ln \frac{1}{\sqrt{2}} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|          | $=1+0-2\ln(2)^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|          | $=1+\ln 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 mark correct answer            |

| Question | Solution                                                            | Marks                      |
|----------|---------------------------------------------------------------------|----------------------------|
| 9 a)(i)  | $N = Ae^{kt}$                                                       |                            |
|          | At $t = 0$ , $N = 2000$                                             |                            |
|          | $2000 = Ae^0$                                                       |                            |
|          | A = 2000                                                            |                            |
|          | $N = 2000e^{kt}$                                                    | 1 mark correct formula     |
|          | At $t = 5$ , $N = 3500$                                             | and $A$ value              |
|          | $3500 = 2000e^{5k}$                                                 |                            |
|          | $1.75 = e^{5k}$                                                     |                            |
|          | $\ln\left(1.75\right) = 5k$                                         |                            |
|          |                                                                     |                            |
|          | $k = \frac{\ln\left(1.75\right)}{5}$                                | 1 mark correct sub and log |
|          | = 0.112                                                             | log                        |
| a)(ii)   | t = 60                                                              |                            |
|          | $N = 2000e^{60 \times 0.112}$ OR $N = 2000e^{60 \times 0.1119}$     |                            |
|          | =1657635 =1650010                                                   | 1 mark for answer for      |
|          | (k = 0.112  used) (exact value of $k$ used)                         | either k value             |
| a)(iii)  | $10000 = 2000e^{0.112t}$                                            | 1 mark correct             |
|          | $5 = e^{0.112t}$                                                    | substitution               |
|          | $ \ln 5 = 0.112t $                                                  |                            |
|          | $t = \frac{\ln 5}{0.112}$                                           |                            |
|          | · ·                                                                 | 1 mark correct answer      |
| 11/2     | t = 14 minutes (either k same answer)                               |                            |
| b)(i)    | Stationary points occur when $\frac{dy}{dx} = 0$                    |                            |
|          | $0 = -e^{-x} \left( x - 1 \right)^2 .$                              |                            |
|          | x=1                                                                 |                            |
|          | $y = 2e^{-1}$                                                       |                            |
|          | <b>,</b>                                                            | 1 mark for point           |
|          | $(1, 2e^{-1})$                                                      |                            |
|          | Test.                                                               |                            |
|          | $\frac{d^2y}{dx^2} = 0$                                             |                            |
|          | $\begin{bmatrix} ax & 0 & 1 & 2 \end{bmatrix}$                      |                            |
|          | $\frac{dy}{dx}$ -1 0 $-e^{-2}$                                      |                            |
|          |                                                                     | 1 mark for test and        |
|          | Decreasing function at $x = 1$ $(1, 2e^{-1})$ is a horizontal P.O.I | conclusion                 |
| b)(ii)   | Possible points of inflexion occur when $\frac{d^2y}{dx^2} = 0$     |                            |
|          |                                                                     |                            |
|          | $0 = e^{-x} \left( x^2 - 4x + 3 \right)$                            |                            |
|          | 0 = (x-1)(x-3)                                                      |                            |
|          |                                                                     | (marks over page)          |

| Oues | stion   | Solution                                      |                               |             |                  |             |               | Marks                                                                                                                      |
|------|---------|-----------------------------------------------|-------------------------------|-------------|------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| 9    | b)(ii)  | $(1, 2e^{-1}), (3, 10e^{-3})$                 |                               |             |                  |             |               | $(1, 2e^{-1})$ should have                                                                                                 |
|      |         | $\left \begin{array}{c} x \end{array}\right $ | 0                             | 1           | 2                | 3           | 4             | been identified as a P.O.I                                                                                                 |
|      |         | $\frac{d^2y}{dx^2}$                           | 3>0                           | 0           | $-e^2 < 0$       | 0           | $3e^{-4} > 0$ | in part (i)                                                                                                                |
|      |         | $dx^2$                                        |                               |             |                  | L           |               | 1 mark for $(3, 10e^{-3})$ as a                                                                                            |
|      |         | (41)                                          |                               | in concavi  |                  | nange in co | ncavity.      | possible point of inflexion                                                                                                |
| i    |         | $\therefore (1, 2e^{-1})$                     |                               |             |                  |             |               |                                                                                                                            |
|      |         | & (3, $10e^{-3}$                              | ) is a point                  | of Inflexio | n.               |             |               | 1 mark test & conclusion                                                                                                   |
|      | b)(iii) | Ty I                                          | $\left(1, \frac{2}{e}\right)$ | 3,          | $\frac{10}{e^3}$ | 6           | X<br>7 É      | <ol> <li>mark for <i>y</i>-intercept and shape</li> <li>mark for P.O.I's</li> <li>mark for horizontal asymptote</li> </ol> |

|          |         | ,                                                                                                                            |                           |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Question |         | Solution                                                                                                                     | Marks                     |
| 10 a)    |         | $y = 2\sin 3x + 4\cos^2 2x$                                                                                                  |                           |
|          |         | $\frac{dy}{dx} = 6\cos 3x - 8\sin 2x$                                                                                        |                           |
|          |         |                                                                                                                              |                           |
|          |         | $\frac{d^2y}{dx^2} = -18\sin 3x - 16\cos 2x$                                                                                 |                           |
|          |         | $-18\sin 3x - 16\cos 2x + 4(2\sin 3x + 4\cos 2x) = p\sin 3x$                                                                 | 1 mark correct            |
|          |         | $-18\sin 3x - 16\cos 2x + 8\sin 3x + 16\cos 2x = p\sin 3x$                                                                   | substitution              |
|          |         | $-10\sin 3x = p\sin 3x$                                                                                                      |                           |
|          |         | p = -10                                                                                                                      | 1 mark correct answer     |
|          | b)(i)   | r = 0.005                                                                                                                    |                           |
|          |         | $A_{\rm i} = 1500000 (1.005)^{12} - 243161$                                                                                  |                           |
|          |         | =\$1349355.72                                                                                                                | 1 mark for A              |
|          |         | $A_2 = 1349355.72(1.005)^{12} - 243161$                                                                                      | I mark for A <sub>1</sub> |
|          |         | =\$1189420.03                                                                                                                |                           |
|          |         | =\$1189420                                                                                                                   | 1 mark for A <sub>2</sub> |
|          | b)(ii)  | $A_1 = 1500000(1.005)^{12} - 243161$                                                                                         |                           |
|          |         | $A_2 = A_1 (1.005)^{12} - 243161$                                                                                            |                           |
|          |         | $= (1500000(1.005)^{12} - 243161)(1.005)^{12} - 243161$                                                                      |                           |
|          |         | $=1500000(1.005)^{2\times 12}-243161(1.005)^{12}-243161$                                                                     |                           |
|          |         | $=1500000(1.005)^{2\times 12}-243161((1.005)^{12}+1)$                                                                        | 1 mark for expression     |
|          |         | $A_3 = A_2 (1.005)^{12} - 243161$                                                                                            | for A <sub>2</sub>        |
|          |         |                                                                                                                              |                           |
|          |         | $= (1500000(1.005)^{2 \times 12} - 243161(1.005)^{12} - 243161)(1.005)^{12} - 243161$                                        |                           |
|          |         | $=1500000 \left(1.005\right)^{3 \times 12} -243161 \left(1.005\right)^{2 \times 12} -243161 \left(1.005\right)^{12} -243161$ | 1 mark recognition of     |
|          |         | $=1500000(1.005)^{3\times12}-243161((1.005)^{2\times12}+(1.005)^{12}+1)$                                                     | series & expression for   |
|          |         | $(1/(1.005^{12})^{n}-1)$                                                                                                     | $A_3$                     |
|          |         | $A_n = 1500000 (1.005)^{n \times 12} - 243161 \left[ \frac{1((1.005^{12})^n - 1)}{1.005^{12} - 1} \right]$                   | 1 mark sum of series      |
|          |         | (1.005 -1)                                                                                                                   |                           |
|          |         | $=150000 \left(1.005\right)^{12n}-243161 \left(\frac{1.005^{12n}-1}{1.005^{12}-1}\right)$                                    |                           |
|          |         |                                                                                                                              |                           |
|          | b)(iii) | $0 = 1500000 (1.005)^{12n} - 243161 \left( \frac{1.005^{12n} - 1}{1.005^{12} - 1} \right)$                                   |                           |
|          |         | $1500000(1.005)^{12n}(1.005^{12}-1)=243161(1.005^{12n}-1)$                                                                   |                           |
|          |         | $1500000(1.005)^{12n}(1.005^{12}-1)=243161(1.005^{12n})-243161$                                                              | 1 mark for $A_n = 0$ and  |
|          |         | $243161 = 243161 (1.005^{12n}) - 1500000 (1.005^{12n}) (1.005^{12} - 1)$                                                     | attempt a rearranging     |
|          |         | $243161 = (1.005^{12n})(243161 - 1500000(1.005^{12} - 1))$                                                                   |                           |
|          |         | $243161 = (1.005^{12u})(150644.2822)$                                                                                        |                           |
|          |         | $1.614140254 = 1.005^{12n}$                                                                                                  |                           |
|          |         | $\ln(1.614140254) = 12n.\ln(1.005)$                                                                                          |                           |
|          |         | $12n = \ln(150644.2822) / \ln(1.005)$                                                                                        |                           |
|          |         | n = 8 years                                                                                                                  | 1 mark for solution       |
|          |         |                                                                                                                              |                           |

| Question | Solution                                                                                       | Marks                        |
|----------|------------------------------------------------------------------------------------------------|------------------------------|
| (c)      | Let x be the probability that he wins the first match $P(2nd) = 0.95x$ $P(3rd) = (0.95)^{2} x$ |                              |
|          | $P(4th) = (0.95)^3 x$                                                                          |                              |
|          | $P(8th) = (0.95)^7 x$ $P(\text{wins comp}) = 0.1$                                              | 1 mark for developing series |
|          | $P(1).P(2)P(8) = 0.1$ $x.(0.95x).(0.95^{2}x)(0.95^{7}x) = 0.1$                                 | 1 mark for establishing      |
|          | $x^{8} \cdot (0.95)^{1+2++7} = 0.1$ $x^{8} \cdot (0.95)^{28} = 0.1$ $x^{8} = 0.420473908$      | equation                     |
|          | $x = \sqrt[8]{0.420473908}$                                                                    |                              |
|          | x = 0.897361393<br>x = 90%                                                                     | 1 mark for solution          |