

Year 7

Half Yearly Examination 2008

Mathematics

General Instructions

- Working time 60 minutes
- Write using black or blue pen.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- Marks may not be awarded for untidy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- that you have done so.

 Clearly indicate your class by placing an X, next to your class

Examiner: D. McQuillan

NAME:

Class	Teacher		
7 E	Mr Gainford	,	
7 F	Mr Kourtesis		
7 M	Ms Nesbitt	t	
7 R	Ms Evans		
7 S	Ms Roessler		
7 T	Ms Ward		,

Section	Wiark
A	/12
В	/11
C	/11
D	/11
E	/11
F	/11
Total	/67

Se	ection A		larks
1	(I) The Egyptian numeral ((((& & 999)) (1)	(A) Both statement (I) and (II) are true.	1
	is equal to ((() \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(B) Statement (I) is true and statement (II) is	
		false.	
		(C) Statement (I) is false and statement (II)	
	(II) The Roman numeral LXVI is equal to XLIV.	is true.	
	(1) The Roman numeral 1322 VI is equal to 321.1 V.	(D) Both statement (I) and (II) are false.	
2	Convert the following to Hindu-Arabic numerals.		
_	(a) 发	·	1
		·	,
	(b) CCLXIV	·	1
			1
	(c) VDVII		
3	Write $5 \times 10^4 + 3 \times 10^2 + 7 \times 10 + 3 \times 1$ as a numeral.		1
	*	•	
4	Simplify the following expressions		-
	(a) $x - x - 2x + x - x$	·	1
	(a) $x-x-2x+x-x$		
			1
	(b) $10 \times f \times 5 \times h \times f$		
			1
	(c) $8 \times b \div (b-4)$		
5	How many terms are in the expression $6b + c - 8 + 3a$?		1
6	When Alex first notices a spider, it is sitting 3cm below		1
	a light switch on the wall. He watches the spider move about 12cm up the wall then 5cm down where it stops		ļ
	for a few seconds. The spider then travels a further 9cm		
	down, followed by 2cm up and finally 6cm down. What		
	is the spider's position on the wall in relation to the light switch?		
7	Use the numbers 2, 3, 6, 8 exactly once to correctly		1
	complete the statement.		
		× [() ÷] = 12	
8			1
Ü	Find $\frac{2}{3}$ of 873.		1
	· .		

Page 1/8

Se	ction B							M	arks
1	How many times bigger is the first '5' than the second								1
٠,	'5' in the number 1 512 753?								
2	What is the base 10 value of the largest 8 digit binary								1
_	number?								. :
								*	
3	Write 3 490 in expanded notation.								1
3	write 3 490 in expanded notation.								'
4	123 456 × 999 999 = ?								1
	•								
			•						
		į							
		1							
	•								
5	Simplify the following numerical expressions								1
	(a) $18+2\times-3+5-2$								1
	(a) 10 12 × 3 1 3 2						•		
									1
	(b) $(7-10) \times 20 + -5$								
		1							1
	(c) -7^2								-
	(c) - /								
									-
6	Use the rule $y = 10 - 2x$ to complete the table.		T	0	2	4	6	1	2
			x	١		4	υ	·	
			У					1	
Ì									
7	Write the first 5 terms of the sequence with the general				-				2
	term $16-n^2$.								
						٠.			
I	4	1							1 !

3	Convert 87 to base 2.	
4	The sum of ten numbers is 2624. If one of the numbers	
	is changed from 456 to 654, what will be the new sum?	
	·	.
5	Plot the elements of {1, -3, 0, -2 } on a number line.	
5	Given the number pattern -4, -1, 2, 5, find the 101st.	
	term.	
	,	
	·	
7	C-144-41-15-14-1-15-4-6-11	
7	Complete the table and find the rule for the following mate	ensuck pattern.
	length (1) 1 2	2 3 77
		·
	matches (m)	
		-
	Rule: $m =$	
	Page 3/	'Q
	. 1 age 3/	•

Marks

2

2

3

Section C

2 Convert 10010₂ to base 10.

1 Write an expression for the average of a, b, c.

Se	ction D	M	[arks
1	If $x > 3$ and $y < 5$ state whether the following		
	expressions are positive or negative.		1
	(a) $x-3$	•	1
			1
	(b) $(3-x)^2(y-5)$		
2	Evaluate		
	() 15 0 5		1
	(a) $15- 2-5 $	·	
	,		_
	(b) -4 - 9		1
	·		
3	$1101_2 - 111_2 = ?$		2
		•	
4	Plot the following points on the number plane and join	X	3
'	them up in order to form a closed polygon.	5 🕇	
		4 †	
	(3, 2) (4, -2) (0, -4) (-5, -2) (-4, 0)	3 +	
	•	2 +	
		1+	
		-5 -4 -3 -2 -1 1 2 3 4 5 ×	
	·	-1+	
		-2+	
	·	-3+	
		- T	
		,	
5	A street of houses with numbers 1 to 100 inclusive is to		2
	be numbered with new brass numerals. How many twos		
	(as digits) would be needed to complete the job?		
-			
L	<u> </u>		لـــــا

2	An integer has an odd number of digits and the first digit is a 3. What is the first digit of the square root of the integer?	1
2		
	The average minimum temperature for a week in Jindabyne is 4°. The minimum temperatures for six days were, 7°, 6°, 2°, 7°, 3°, 0°. What was the minimum temperature on the 7 th day?	2
3	How many two-digit numbers can be formed with the digits (using each digit once) 8, 5, 3, 0?	2
4	Students in a group dancing class are spaced evenly around a circle and are counted consecutively from number 1. If Student 20 is directly opposite Student 53. How many students are in the group?	2
5	Robert has an average of 88% over his past four maths tests. What must he score in his next test to raise his average to 90%.	2
6	Mr Newton counted his class in groups of 4 and there were 2 left over. He then counted them in groups of 5 and there was 1 left over. If 15 of his class were girls and he had more girls than boys, what is the number of boys in his class?	2

Se	ction F	M	arks
1	In a basketball game, there were at all times 5 players on the court and 3 reserves on the bench for one of the teams. Each of the eight members of this team was on		2
	the court for the same amount of time. How many minutes did each team member play if the game lasted 48 minutes?		
2	How many three digit numbers from 100 to 999 inclusive have one digit which is the average of the other two?		3
		•	
3	Using the square root algorithm evaluate $\sqrt{9216}$.		. 3
	•		

	,	
		-
	·	
216.		. 3
	·	
	•	
	.+	
	·	
Page 6/	8	

4	A, B, C, D, E represent unique digits (from 0 to 9) of a five digit number such that		- 3
	ABCDE ×4 EDCBA		
	Find the digits represented by each letter.		
		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	

End of Exam

Extra Working Space

Question		
	, .	
•		

Extra Working Space

Question		
-		٠
r		
	·	
		

Se	ction A		Marks
1	(I) The Egyptian numeral ((((ととりのつつ))) is equal to (((ととのののの)))	(A) Both statement (I) and (II) are true. (B) Statement (I) is true and statement (II) is false.	1
	(II) The Roman numeral LXVI is equal to XLIV.	(C) Statement (I) is false and statement (II) is true. (D) Both statement (I) and (II) are false.	
2	Convert the following to Hindu-Arabic numerals. (a) 数 名とととり 2990 (1005410	1
	(b) CCLXIV	264	1
	(c) VDVII	5507.	1
3	Write $5 \times 10^4 + 3 \times 10^2 + 7 \times 10 + 3 \times 1$ as a numeral.	50373	1
4	Simplify the following expressions (a) $x-x-2x+x-x$	- 2x.	1
	(b) $10 \times f \times 5 \times h \times f$	50f2h.	1
	(c) $8 \times b \div (b-4)$	<u>8b</u> . b-4	1
5	How many terms are in the expression $6b+c-8+3a$?	4.	1
6	When Alex first notices a spider, it is sitting 3cm below a light switch on the wall. He watches the spider move	-3+12-5-9+2-6=-9	1
	about 12cm up the wall then 5cm down where it stops for a few seconds. The spider then travels a further 9cm down, followed by 2cm up and finally 6cm down. What is the spider's position on the wall in relation to the light switch?	9 cm below.	
7	Use the numbers 2, 3, 6, 8 exactly once to correctly complete the statement.	$\frac{6 \times [(8 - 2) \div 3]}{12} = 12$	1
8	2	8 ×[(6-3)+2]=12	1
,	Find $\frac{2}{3}$ of 873.	522	

	ection B	11.	Iarks
1	How many times bigger is the first '5' than the second '5' in the number 1 512 753?	10 000	1
2	What is the base 10 value of the largest 8 digit binary number?	1+2+22+23+24+25+24+2	1
	1011111	255	
3	Write 3 490 in expanded notation.	3-x1000+4x100+9x10	1
1	123 456 × 999 999 = 7		1
	123 456 000 000		
	123455876544		
	Simplify the following numerical expressions $-\ell_{\varphi}$ (a) $18+2\times-3+5-2$	15	. 1
	(b) $(7-10) \times 20 \div -5$	12	1
	(c) -7^2	-49	1
	Use the rule $y = 10 - 2x$ to complete the table.	x 0 2 4 6 y 10 6 2 -2	2
	Write the first 5 terms of the sequence with the general term $16-n^2$. 16-4	15, 12, 7, 0, -9	. 2
	16-2 ² 16-5 ¹		

2 Convert 10010 ₂ to base 10.	S	Section C	Marks
2 Convert 100102 to base 10. 1	1	Write an expression for the average of a, b, c .	1
2 Convert 100102 to base 10. 1		. 3	
3 Convert 87 to base 2. 64 32 16 8 4 2 1 87 64 203 4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? 2624 - 456 + 654 2168 - 2168 - 2822 5 Plot the elements of {1, -3, 0, -2 } on a number line. 6 Given the number pattern -4, -1, 2, 5, find the 101 term. 15	2	Convert 10010 ₂ to base 10.	1
3 Convert 87 to base 2. 64 32 16 8 4 2 1 87 1010111 64 23 4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? 2604 - 21684 2168 2822 = 2822 5 Plot the elements of {1, -3, 0, -2 } on a number line. 6 Given the number pattern -4, -1, 2, 5, find the 101 term. 1		18	
3 Convert 87 to base 2. 64 32 16 8 4 2 1 87 6 4			
87 64 23 16 4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $2624 - 456 + 654$ 456 654 2168 2822 5 Plot the elements of {1, -3, 0, -2 } on a number line. 6 Given the number pattern -4, -1, 2, 5, find the 101^{14} 101			
4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $3604 - 2168 + 456 - 654 = 2822$ 5 Plot the elements of {1, -3, 0, -2 } on a number line. 6 Given the number pattern -4, -1, 2, 5, find the 101^{10} term. 1 St. trm = -4 difference = 3 7 Complete the table and find the rule for the following matchstick pattern. 3 Iength (1) 1 2 3 77	3		1
4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $2604 - 456 + 654$ 1 $2604 - 2168 + 456 - 2168 - 2822$ 2822 282			
4 The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $2624 - 2168 + 2822$ 5 Plot the elements of $\{1, -3, 0, -2 \}$ on a number line. 6 Given the number pattern $-4, -1, 2, 5,$ find the 101^{14} and 101^{14} and 101^{14} and 101^{14} are 101^{14} and 101^{14} and 101^{14} are 101^{14} and 101^{14} and 101^{14} are 101^{14} are 101^{14} and 101^{14} are 101^{14} are 101^{14} are 101^{14} and 101^{14} are 101^{14} are 101^{14} and 101^{14} are 101^{14} are 101^{14} and 101^{14} are 101^{14} and 101^{14} are 101^{14} and 101^{14} are 101^{14} and 101^{14} are 101^{14}	ļ		
The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $3624 - 2168 + 2822$ The sum of ten numbers is 2624. If one of the numbers is changed from 456 to 654, what will be the new sum? $456 - 2168 + 2822$ Flot the elements of $\{1, -3, 0, +2\}$ on a number line. Plot the elements of $\{1, -3, 0, +2\}$ on a number line. Given the number pattern $-4, -1, 2, 5,$ find the 101^{st} term. $ st + $		1 2 3	
is changed from 456 to 654, what will be the new sum? $2624 - 436 + 634 = 2822$ 5 Plot the elements of {1, -3, 0, -2 } on a number line. 6 Given the number pattern -4, -1, 2, 5, find the 101^{st} term. $15t$ term = -4 difference = 3 1 Complete the table and find the rule for the following matchstick pattern. 3 Iength (1) 1 2 3 77		1 0 -3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	The sum of ten numbers is 2624. If one of the numbers $2604 - 450 + 654$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		is stidinged from 450 to 654, what will be the new suitif	
Flot the elements of {1, -3, 0, -2 } on a number line. Given the number pattern -4, -1, 2, 5, find the 101st term. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. 3		456 654	
Flot the elements of {1, -3, 0, -2 } on a number line. Given the number pattern -4, -1, 2, 5, find the 101st term. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. 3		$\frac{1}{2168} \frac{2822}{2822}$	
6 Given the number pattern $-4, -1, 2, 5,$ find the 101^{st} term. St trm = -4 296. Complete the table and find the rule for the following matchstick pattern. St trm = 3 299 - 1 mark 3	5		2
Given the number pattern $-4, -1, 2, 5,$ find the 101^{st} term. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. Complete the table and find the rule for the following matchstick pattern. Complete the table and find the rule for the following matchstick pattern.			-
6 Given the number pattern -4, -1, 2, 5, find the 101st term. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296.		3 -2 -1 0 1 2 3	
6 Given the number pattern -4, -1, 2, 5, find the 101st term. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296. Complete the table and find the rule for the following matchstick pattern. St. term = -4 296.	.	1/2 mark for each	
difference = 3 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	6	Given the number pattern -4 , -1 , 2 , 5 , find the 101^{st}	2
Complete the table and find the rule for the following matchstick pattern. 3 length (l) 1 2 3 77		1st tem = -4 296.	
7 Complete the table and find the rule for the following matchstick pattern. 3 length (1) 1 2 3 77	1		
length (1) 1 2 3 77		and a receipt	
length (1) 1 2 3 77	.		
length (1) 1 2 3 77	7	Complete the table and find the rule for the following much halid and find the rule following much	
	1	Complete the table and that the rule for the following materistick pattern.	3
matches (m) 4 6 8 156	-	length(l) 1 2 3 77	
2022		matches (m) 1	
2002		7 0 0 0	
1		ah2	
Rule: $m = 2l + 2$		Rule: $m = 2l + 2$	
			-

Section D	N	Iarks
1 If $x > 3$ and $y < 5$ state whether the following		
expressions are positive or negative.		1
(-) 2	ansiture.	
(a) $x-3$		1
(b) $(3-x)^2(y-5)$	positive negative	1
2 Evaluate		1
(a) 15-[2-5]	15-3 - 12	
(a) 13 2 3 ·		
		1
(b) -4 - 9	4-9	•
	1101	2
3 11012 - 1112 = ?	1101	_
*	$-\frac{110}{1102}$	
	1102	
,		
4 Plot the following points on the number plane and join	y 5	3
them up in order to form a closed polygon.	, ,	
(3, 2) (4, -2) (0, -4) (-5, -2) (-4, 0)	. а	
(3,2) (3, 2) (3, 3) (3, 4)	2	
•	4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-1	
	-2-	·
	-3-	
	-41	
•	- n 	
5 A street of houses with numbers 1 to 100 inclusive is to	11-20 2	2 .
be numbered with new brass numerals. How many twos	11 - 20 2	
(as digits) would be needed to complete the job?	31-917	
	20	
	~~	
	· ·	
		L

Se	ection E	N	Aarks
1	An integer has an odd number of digits and the first digit is a 3. What is the first digit of the square root of the integer?		1
2	The average minimum temperature for a week in Jindabyne is 4°. The minimum temperatures for six days were, 7°, 6°, 2°, 7°, 3°, 0°. What was the minimum temperature on the 7 th day?	TOTAL = $7 \times 4 = 28$ $\frac{25 + x}{7} = 4$ $2c = 3$	2
3	How many two-digit numbers can be formed with the digits (using each digit once) 8, 5, 3, 0?	85 35 83 38 80 30 9	2
4	Students in a group dancing class are spaced evenly around a circle and are counted consecutively from number 1. If Student 20 is directly opposite Student 53. How many students are in the group?	(66)	2
5	Robert has an average of 88% over his past four maths tests. What must he score in his next test to raise his average to 90%.	90% over 5 tests => total marks 450 4x88 + 2c = 450 352 + 2c = 450 2 = 98%.	2
6	Mr Newton counted his class in groups of 4 and there were 2 left over. He then counted them in groups of 5 and there was 1 left over. If 15 of his class were girls and he had more girls than boys, what is the number of boys in his class?	(1 boys)	2

	Section F		Marks
	In a basketball game, there were at all times 5 players on the court and 3 reserves on the bench for one of the teams. Each of the eight members of this team was on the court for the same amount of time. How many minutes did each team member play if the game lasted		2
	48 minutes? On court playerime = 5×48 = 240	30 mins	
	- Time per player = 240-ter = 30 miles		
	2 How many three digit numbers from 100 to 999 inclusive have one digit which is the average of the other two?		3
	(0,112); (1,2,3) (7,8,9) H7 (0,2,4); (1,3,8), (5,7,9) 1+5		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	(0,4,8), (1,5,9) 1+16 4 arrayout 6 arrangements 4+16	1 - 1	
11/1	4 X 4 + 6 × 16 = 112	[2]	
3	Using the square root algorithm evaluate √9216.		3
,	V92 16 81		
	180+6=186 11 16		
	x6/11 16	, 96	
	· V9216 = 96		
		•	

4	A, B, C, D, E represent unique digits (from 0 to 9) of a five digit number such that	3
	ABCDE ×4 EDCBA	21978
	Find the digits represented by each letter.	x4
	8	7912
,		

End of Exam

Extra Working Space

Question		
- .		
	·	