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QUESTION ONE (12 marks) Use a separate writing booklet.

(a) Simplify (—n—n_'T)' .

(b) Write down the derivative of y = cos™! 22,

. 1
(C) Find / m dz.
(d) Simplify log, Ve.
(e) Write down a primitive of 2z e

(f) Write cos 26 in terms of ¢, where £ = tan#.

(g) A is the point (—6,2) and B is the point (4, 10). Find the cgordinates of the point P |2

that divides the interval AB internally in the ratio 7 : 4.

(h) Sketch the graph of the polynomial function y = z3 (3 — ). (There is no need to find

the coordinates of the turning point.)

(i) Use the identity (14 )" = Z "C, ¢" to prove that

=0

"Co+"Cr+"Cot -+ "Cp =27,

=oE

x] [=] [=]

2]

]

Exam continues next page ...
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QUESTION TWO (12 marks) Use a separate writing booklet. Marks
(a) Use the substitution « = u ~ 2 to find / (a:—-fwi)i dz.

>0.

z
b) Solve the i b
(b) Solve the inequation P

(c) Show that tan (tan;l 2— tan_;\/ﬁ) = —5\/‘—27*—6-

(@)

The diagram above shows two circles intersecting at A and B. The points P, A
and @ are collinear, and the chords PM and NQ, when produced, intersect at C.

Let ZPAB = «.
(i) Give areason why /ZBNQ = c.
(ii) Prove that the quadrilateral CM BN is cyclic.

Exam continues overleaf ...
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QUESTION THREE (12 marks) Use a separate writing booklet. Marks

(a) An ice-cube is taken out of a freezer and begins to melt. Assume that it remains a
cube as it does so. If its edge length is decreasing at the constant rate of 2 mmi/min,
find the rate at which its volume is decreasing at the instant when the edge length is
15 mm.

(b) It is known that the polynomial equation 6z° - 172% — 5z -+ 6 = 0 has three real roots,
and that two of them have a product of —2.

(i) Use the product of the roots to find one of the three roots.

o] [=]

(ii) Use the sum of the roots, or any other suitable method, to find the other two

roots.
=
(c) Find the exact value of / {cosz — cos® z) dz.
Jo
QUESTION FOUR, (12 marks) Use a separate writing booklet. Marks
(a) Prove by mathematical induction that for all positive integer values of n,

1x2%42%x324+3%x 42+ +nln+1)* = Snn+1)(n+2)@3n+5).
(b) Let o be the real root of the equation cosz = 2.

(i) On the same diagram, sketch the graphs of the functions y = cosz and y = 2z.
(il) Show « on your diagram.

(iii) Use one application of Newton’s method with starting value % to estimate ov.
Write your answer correct to two decimal places.

{c) Use'the identity (1 +z)*(1 +2)%® = (1 + 2)'% to prove that *

() (DO O -(2)

Exam continues next page ...
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QUESTION FIVE (12 marks) Usea separ?te writing booklet. Marks UESTION SIX (12 marks) Use a separate writing booklet. Marks
!

(a) A particle moves along the z-axis. It starts from rest at the point = = 1. Its accel-

&n
b
a) Find the term independent of z in the expansion of { az® + — where n is a |4 1
) ’ P ( z? ’ eration is given by & = —4 (z + -§> Find its velocity when it is halt-way from its
oz

positive integer.
starting point to the origin.
(b) Newton’s law of cooling states that the rate of decrease of the temperature of a heated
body is proportional to the excess of the temperature of the body over that of its (b)
swrroundings. Using t for time (in minutes), H for the temperature of the body AY
(in °C), and S for the constant temperature of the surroundings (also in °C), the law

dH
of cooling can be modelled by the differential equation — = —~k (H — §), where & is

dt x* =4ay

a positive constant.
(i) Show that the function H = Ae™* 4 § satisfies the differential equation, where ° R(- ap,3a+ap2)

A is a constant. 0Qaq, aqz)

(ii) Suppose that a body is heated to 80°C in a room whose temperature is 20 °C, PQap, z)
and that after 5 minutes the temperature of the body is 70°C. P.ap

¢
5
() Show that, at any time ¢ > 0, H = 20 + 60 (g)

=Y

(8) Find, correct to one decimal place, the temperature of the body after one
hour.

(c) Let P(a) = a®(b + c) + b (c + a) + 2(a + b) + 2abe. 2 ( 2
. - . In the diagram above, P(2ap, ap*) and Q(2aq, ag”) are distinct points on the parabola
(i) Use the factor theorem to show that a -+ b is a factor of P(a). +* = day, and R is the point (—ap, 3a + ap?).

[1]

(i) Hence, or otherwise, factorise P(a). (i) Show that the normal to the parabola at P has equation 4 py = 2ap + ap®.
(ii) Show that the normal at P passes through R
(i) If the normal at @ also passes through R, show that ¢* +pg — 1 = 0.

(iv) Show that there are always two real values of g satisfying the equation in part (iii).

[eo] [=] [] [ [eo]

(v) Deduce that three normals to the parabola, two of which are perpendicular to
each other, pass through the point R. (You may assume that p? # %)

Exam continues overleaf ... Exam continues next page ...




SGS Trial 2008 .............. Form VI Mathematics Extension 1 .............. Page 7

QUESTION SEVEN (12 marks) Use a separate writing booklet. Marks

(a)

The diagram above shows a British 50 pence coin. The seven circular arcs AB, BC,
..., GA are of equal length and their centres are F, F, ..., D respectively. Fach arc
has radius a.

(i} Show that the sector AED has area ma’.

[e2] [eo]

(ii) Hence, or otherwise, show that the face of the coin has area %a,z (7r — Ttan 114)

Exam continues overleaf ...
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(b)

=Y

The diagram above shows the parabolic path of a particle that is projected from the

" origin O with velocity V at an angle of o to the horizontal. It lands at the point P,

which lies on a plane inclined at an angle of B to the horizontal. When the particle
strikes the plane, it is travelling at 90° to the plane.

Let OP = d, and assume that the horizontal and vertical components of the displace-
ment of the particle from O while it is moving on its parabolic path are given by
' z = Vtcosa and y = Visina — 2gt?,
where ¢ is the time elapsed, and g is acceleration due to gravity.
(i) Find the coordinates of P in terms of d and .

(ii) By substituting the coordinates of P found in part (i) into the displacement
equations, show that

2V2 cos?
d= —»—a(tanacosﬂ — sinﬂ).
gcos® 8
(iii) By resolving the horizontal and vertical components of the velocity at P, show
that
gdcosfB
ot f = -~ &
cot 3 Vit 0%

(iv) Hence show that tana = cot f+ 2tan 8.

END OF EXAMINATION

2] [=]
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