WESTERN REGION

2010 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time 5 minutes.
- O Working Time 3 hours.
- o Write using a blue or black pen.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- Attempt Questions 1-8.
- o All questions are of equal value.

2010 Trial HSC Examination Mathematics Extension 2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

2

Marks Question 1 (15 Marks) Use a Separate Sheet of paper $\int_{\frac{\pi}{2}}^{\frac{\pi}{12}} \sec 4x \ \tan 4x \ dx$ 2 $\int x \ln x \, dx$ 2 Find b) $\int \frac{9x^3 + 9x^2 + 5x + 4}{3x + 1} \ dx$ 3 Find Find constants a, b and c such that 2 d) $\frac{3x^2 - 2x - 3}{(x^2 + 9)(x - 3)} = \frac{ax + b}{x^2 + 9} + \frac{c}{x - 3}$ ii. Hence find $\int \frac{3x^2 - 2x - 3}{\left(x^2 + 9\right)\left(x - 3\right)} dx.$ 2 By making the substitution $t = \tan \frac{\theta}{2}$, evaluate $\int_0^{\pi} \frac{d\theta}{1 + \sin \theta + \cos \theta}$

End of Question 1

Questi	on 2	(15 Marks)	Use a Separate Sheet of paper	Marks
a)		A = 3 + 4i and $B = 1 - x$ and y are real number	- i , express the following in the form $x + iy$ ers.	
	i.	AB		1
	ii.	$\frac{A}{iB}$		2
	iii.	\sqrt{A}		3
b)	If	$w=\sqrt{3}-i,$		
	i.	Find the exact value	of $ w $ and $arg w$.	2
	ii.	Find the exact value	of w^5 in the form $a + ib$ where a and b are real.	2
c)	On the	B ← ← E Argand diagram, OA	A A x represents the complex number $z_1 = x + iy$,	
			f OB is twice that of OA.	
	i.	Show that OB repres	ents the complex number $-2y + 2ix$.	1
	ii.	Given that AOBC is by OC.	a rectangle, find the complex number represented	1
	iii.	Find the complex nu	mber represented by BA.	1

End of Question 2

 $|z-1| \le \sqrt{2}$ and $0 \le arg(z+i) \le \frac{\pi}{4}$ both hold.

Sketch the region on an argand diagram where

d)

Use a Separate Sheet of paper

Marks

2

2 2

a)

The diagram shows the graph of the function y = f(x) which has asymptotes, vertically at x = 0 and horizontally at y = 1 for $x \ge 0$ and at y = 0 for $x \le 0$.

Draw separate sketches of the following showing any critical features.

i.
$$y = \frac{1}{f(x)}$$

 $y = [f(x)]^2$

y = f'(x)

Question 3 continues

b)

Marks

2

3

Question 3 continued

2010 Trial HSC Examination

The point $A\left(ca, \frac{c}{a}\right)$, where $a \neq \pm 1$ lies on the hyperbola $xy = c^2$. The normal through A meets the other branch of the curve at B.

Show that the equation of the normal through A is

$$y = a^2 x + \frac{c}{a} \left(1 - a^4 \right)$$

Hence if B has coordinates $\left(cb, \frac{c}{b}\right)$, show that $b = \frac{-1}{a^3}$.

If this hyperbola is rotated clockwise through 45°, show that the equation iii. becomes

$$x^2 - y^2 = 2c^2.$$

2

2

Question 4 (15 Marks)

ii.

Use a Separate Sheet of paper Marks

A solid shape has as its base an ellipse in the XY plane as shown below. Sections taken perpendicular to the X-axis are equilateral triangles. The major and minor axes of the ellipse are 4 metres and 2 metres respectively.

i. Write down the equation of the ellipse.

Show that the area of the cross-section at x = k is given by

$$A = \frac{\sqrt{3}}{4} \left(4 - k^2 \right).$$

iii. By using the technique of slicing, find the volume of the solid.

b) The region enclosed by the curve $y = 5x - x^2$, the x axis and the lines x = 1 and x = 3 is rotated about the y axis. By using the method of cylindrical shells, find the volume of the solid so produced.

Question 4 continues

Que	Question 4 continued		
c)	The	roots of the equation $x^3 - 3x^2 + 9 = 0$ are α , β and γ .	
	i.	Determine the polynomial equation with roots α^2 , β^2 and γ^2 .	2
,	ii.	Find the value of $\alpha^2 + \beta^2 + \gamma^2$ and hence evaluate $\alpha^3 + \beta^3 + \gamma^3$.	2
d)		en that the polynomial $P(x)$ has a double root at $x = \alpha$, show that the roomial $p'(x)$ will have a single root at $x = \alpha$.	2

2010 Trial HSC Examination

Question 5 (15 Marks)

Use a Separate Sheet of paper

Marks

3

3

2

a)

The above sketch shows a smooth vertical rod OM. Light inextensible strings OP and QP are attached to the rod at O and a mass of 3kg at P. At Q, a 2kg mass is free to slide on the rod. P is rotating in a horizontal circle about the rod.

When the distance OQ is 5 metres

- i. Calculate the tension T_1 in PQ and T_2 in OP. (In terms of g)
- i. Hence calculate the angular velocity of P to maintain this system. Give your answer correct to one decimal place. (Use $g = 10 \text{ ms}^{-2}$)
- b) By taking logarithms of both sides and then differentiating implicitly, verify the rule for differentiating the quotient $y = \frac{u(x)}{v(x)}$ is given by

$$\frac{dy}{dx} = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}$$

Question 5 continues

Question 5 continued

2010 Trial HSC Examination

Marks

3

c) i. Show that the recurrence (reduction) formula for

 $I_n = \int tan^n x dx$ is $I_n = \frac{1}{n-1} \tan^{n-1} x - I_{n-2}$.

ii. Hence evaluate

$$\int_0^{\frac{\pi}{4}} \tan^3 x \ dx$$

Question 6 (15 Marks)

3

2

3

3

2

2

- A solid of unit mass is dropped under gravity from rest at a height of H metres. Air resistance is proportional to the speed (V) of the mass. (acceleration under gravity = g)
 - 1 Write the equation for the acceleration of the mass. (Use k as the constant of proportionality)

Use a Separate Sheet of paper

Show that the velocity (V) of the solid after t seconds is given by

$$V = \frac{g}{k} \left(1 - e^{-kt} \right)$$

Bt using the fact that $\frac{d}{dx} \left(\frac{1}{2} V^2 \right) = \ddot{x}$, show that

$$x = \frac{g}{k^2} \left[\ln \frac{g}{g - kV} - \frac{kV}{g} \right].$$

- Given $z = \cos \theta + i\sin \theta$, and using De Moivres' Theorem
 - Find an expression for $\cos 4\theta$ in terms of powers of $\cos \theta$. i.
 - Determine the roots of the equation $z^4 = -1$. ii.
 - Using the fact that $z^n + \frac{1}{z^n} = 2\cos n\theta$, find an expression for $\cos^4 \theta$ in terms of $\cos n\theta$.

End of Question 6

Ques	tion 7	(15 Marks)	Use a Separate Sheet of paper	Marks
a)	i.	Prove that cos[(/	$(k-1)\theta$ - 2 cos θ cos $k\theta$ = - cos $[(k+1)\theta]$.	1
	ii.	Hence, using ma	thematical induction, prove that if n is a positive integer	4
	1 + co	os θ + cos 2θ +	+ $\cos(n-1)\theta = \frac{1-\cos\theta-\cos n\theta+\cos[(n-1)\theta]}{2-2\cos\theta}$	
			and the second s	
b)			om the end of a rope and is hauled up vertically from rest The pulling force on the rope starts at 250N and decreases	3

Find the velocity of the mass when 10 metres have been wound up.

(Neglect the weight of the rope and take $g = 10ms^{-2}$)

uniformly by 10N for every metre wound up.

2010 Trial HSC Examination

- When a polynomial P(x) is divided by (x-1) the remainder is 3 and when divided by (x-2) the remainder is 5. Find the remainder when the polynomial is divided by (x-1)(x-2).
- Show that $\frac{x^4 + x^2 + 1}{x^2} \ge 3$ for all x. 2

(Hint: Start from $(x^2 - 1)^2 \ge 0$)

If abc represents a three digit number (not the product of a, b and c), show that if a + c = b then the number is divisible by 11.

(a, b and c are positive integers)

Question 8 (15 Marks)

Use a Separate Sheet of paper

Marks

2

3

2

3

2

3

a)

In the diagram PCQ is a straight line joining the centres of the circles P and Q. AB and DC are common tangents.

i. Explain why PADC and CDPQ are cyclic quadrilaterals.

Show that $\triangle ADC \parallel \triangle BQC$.

iii. Show that PD || CB.

ii.

Given $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$

If $P = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta$

i. Prove that $P \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$.

ii. Hence show that if $\theta = \frac{2\pi}{7}$ then

 $P = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta = 0$

iii. By writing P in terms of $\cos \theta$, prove that $\cos \frac{2\pi}{7}$ is a root of the Polynomial equation

$$8x^3 + 4x^2 - 4x - 1 = 0$$

End of Examination

WESTERN REGION

2010 TRIAL HSC EXAMINATION

Mathematics Extension 2

SOLUTIONS

Quest	tion 1	Trial HSC Examination - Mathematics Exten	sion 2	2010
Part	Solution		Marks	Comment
a)	$\int_{\frac{\pi}{16}}^{\frac{\pi}{12}} \sec 4.$	$x . tan 4x dx = \left[\frac{sec 4x}{4}\right]_{\frac{\pi}{16}}^{\frac{\pi}{12}}$	1	Use standard integral sheet
		$=\frac{1}{4}\left[\sec\frac{\pi}{3}-\sec\frac{\pi}{4}\right]$		
		$= \frac{1}{4} \left[2 - \sqrt{2} \right]$ $= \frac{2 - \sqrt{2}}{4}$	1	
		=4		
b)	$\int x \ln x dx$	$= \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x^2 \cdot \frac{1}{x} dx$	1	
		$= \frac{1}{2}x^2 \ln x - \frac{1}{2} \int x dx$		
		$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + c$	1	
c)	$\int \frac{9x^3 + 9x}{3x}$	$\int_{0}^{2} \frac{x^{2} + 5x + 4}{x + 1} dx = \int_{0}^{2} \left(3x^{2} + 2x + 1 + \frac{3}{3x + 1} \right) dx$	2	By division
		$= x^3 + x^2 + x + \ln(3x + 1) + c$	1	
d)	i. $\frac{3x^2 - 1}{(x^2 + 9)^2}$	$\frac{2x-3}{(x-3)} = \frac{ax+b}{x^2+9} + \frac{c}{x-3}$		
	$3x^2 - 2x$ $x = 3 \to 18$	$-3 = (ax + b)(x - 3) + c(x^{2} + 9)$ 3 = 18c	1	
	$x = 0 \rightarrow -3$			Any fair
	$x = 1 \rightarrow -2$	b = 4 $c = (a + 4)(-2) + 10$ $= -2a + 2$		method
	$\therefore a = 2, b$	$\therefore a = 2$ $= 4, c = 1$	1	
	ii. $\int \frac{3x^2 - 1}{\left(x^2 + \frac{1}{2}\right)^2} dx$	$\frac{-2x-3}{9(x-3)}dx = \int \left(\frac{2x+4}{x^2+9} + \frac{1}{x-3}\right)dx$		
		$= \int \left(\frac{2x}{x^2 + 9} + \frac{4}{x^2 + 9} + \frac{1}{x - 3} \right) dx$	1	
		$= \ln(x^2 + 9) + \frac{4}{3} \tan^{-1} \frac{x}{3} + \ln(x - 3) + c$	1	Fully
		$= \ln(x^2 + 9)(x - 3) + \frac{4}{3} \tan^{-1} \frac{x}{3} + c$		simplified not needed

Quest	tion 1	Trial HSC Examination - Mathematics Exten	sion 2	2010
Part	Solution		Marks	Comment
e)	$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin \theta}$	$\frac{d\theta}{d\theta + \cos \theta} \text{if } t = \tan \frac{\theta}{2}$ $\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2}$ $= \frac{1}{2} \left(1 + \tan^2 \frac{\theta}{2} \right)$ $= \frac{1}{2} \left(1 + t^2 \right)$ $\frac{d\theta}{dt} = \frac{2}{1 + t^2}$ $d\theta = \frac{2 dt}{1 + t^2}$ $\theta = \frac{\pi}{2}, t = 1$ $\theta = 0, t = 0$	1	
	$\int_0^1 \frac{\frac{2}{1+t}}{1+\frac{2t}{1+t}}$	$\frac{\frac{2}{t^2} dt}{\frac{t^2}{t^2} + \frac{1 - t^2}{1 + t^2}} = \int_0^1 \frac{2 dt}{1 + t^2 + 2t + 1 - t^2}$ $= \int_0^1 \frac{2 dt}{2 + 2t}$ $= \left[\ln (1 + t)\right]_0^1$ $= \ln 2 - \ln 1$ $= \ln 2$	1	
			/15	

Ques	tion 2	Trial HSC Examination - Mathematics Ext	ension 2	2010
Part	Solution		Marks	Comment
a)	= 3	(3+4i)(1-i) 3-3i+4i+4 7+i	1	
		$ \frac{3+4i}{i(1-i)} \\ \frac{3+4i}{1+i} \times \frac{1-i}{1-i} \\ \frac{3-3i+4i+4}{2} $	1	
		$\frac{2}{7+i} = \frac{7}{2} + \frac{1}{2}i$	1	
	∴. <i>A</i>	$\sqrt{A} = a + ib$ (a and b real) $a = a^2 - b^2 + 2abi$ $a^2 - b^2 = 3$, $2ab = 4$ ab = 2	1	
		$\therefore b = \frac{2}{a}$ $\therefore a^2 - \frac{4}{a^2} = 3$ $a^4 - 3a^2 - 4 = 0$	1 1 1 1 1 1 1 1 1	Any fair method
	∴ a = ± : ∴ b = ±	$(a^2 - 4)(a^2 + 1) = 0$ 2 only real solution	1	
		$\therefore \sqrt{A} = \pm (2+i)$	1	

Ques	tion 2 T	rial HSC Examination - Mathematics Ext	ension 2	2010
Part	Solution		Marks	Comment
b)	i. $ w = \sqrt{3}$ $w = 2\left(\frac{\sqrt{3}}{2}\right)$		1	
	\	$\cos \theta = \frac{\sqrt{3}}{2}, \sin \theta = -\frac{1}{2}$		
	∴ θ = ∴ Arg w	0	1	
		$-i = 2\left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right]$ $2\left[\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right]$	1	
		$2\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ $-16\sqrt{3} - 16i$	1	
(c)	=i(x)	$ \begin{array}{l} A \times 2 \\ z + iy \times 2 \\ y + 2ix \end{array} $	1	
		B + OA 2y + 2ix + (x + iy) -2y + (2x + y)i	1	
	=	O + OA OB + OA (-2y + 2ix) + (x + iy) + 2y) + (y - 2x) i	1	0 if signs incorrect

Quest	Question 3 Trial HSC Examination - Mathematics Extension			2010
Part	Solution		Marks	Comment
a) ***	i. y =	$ \begin{array}{c c} 1 \\ \hline (x) \end{array} $	2 → _x	2 marks each, deduct a mark for a major feature missing or incorrect, e.g. asymptotes not correct in (i)
	ii. <i>y</i> = [<i>f</i>		2	
₹.		-2 -1 3	→ _x	
*	iii. <i>y</i> = <i>f</i>	f'(x)	2	

Question 3 Trial HSC Examination - Mathematics Extension 2			2010
Part Soluti		Marks	Comment
∴ Grae	$\frac{c^2}{x}$ $= -\frac{c^2}{x^2}, \text{ at } x = ca \frac{dy}{dx} = -\frac{1}{a^2}$ dient of normal = a^2 ation of normal is $y - \frac{c}{a} = a^2(x - ca)$	1	
ii. So	$= a^{2}x - ca^{3}$ $y = a^{2}x + \frac{c}{a} - ca^{3}$ $y = a^{2}x + \frac{c}{a}(1 - a^{4})$ Iving $y = \frac{c^{2}}{x}$ with equation in (i)	1	
D 1	$\frac{c^2}{x} = a^2 x + \frac{c}{a} (1 - a^4)$ $\therefore a^2 x^2 + \frac{c}{a} (1 - a^4) x - c^2 = 0$	1	
I	uct of roots = $-\frac{c^2}{a^2}$ roots are $x = cb$ and $x = ca$	1	
	$\therefore c^2 ab = -\frac{c^2}{a^2}$ $\therefore b = -\frac{1}{a^3}$	1	
-	Original Vertices $(\pm c, \pm c)$ Distance from O is $\sqrt{2} c$ \therefore New vertices $= (\pm \sqrt{2}, 0)$ $\therefore a = \sqrt{2} c$ As it is rectangular $b = \sqrt{2} c$ $-\frac{y^2}{2c^2} = 1$ $-y^2 = 2c^2$	1 1 1	Any logical reasoning

Ques	tion 4 Trial HSC Examination - Mathematics Ext	ension 2	2010
Part	Solution	Marks	Comment
a)	i. $a = 2$, $b = 1$		
	$\therefore \text{ Equation is } \frac{x^2}{4} + y^2 = 1$	1	
	ii. At $x = k$, $y^2 = 1 - \frac{k^2}{4}$		
	$\therefore y = \pm \sqrt{\frac{4 - k^2}{4}}$		
	∴ Length of side of triangle = $\sqrt{4 - k^2}$	1	
	:. Area = $\frac{1}{2}\sqrt{4-k^2}$. $\sqrt{4-k^2}$ sin 60°		
	$=\frac{1}{2}\left(4-k^2\right)\cdot\frac{\sqrt{3}}{2}$		
	$=\frac{\sqrt{3}}{4}\left(4-k^2\right)$	1	
	iii. Let slice thickness = δk		
	$\therefore \text{Volume of slice } \delta V = \frac{\sqrt{3}}{4} \left(4 - k^2\right) \cdot \delta k$		
	$\therefore V = \int_{-2}^{2} \frac{\sqrt{3}}{4} \left(4 - k^2 \right) dk$	1	
	$=\frac{\sqrt{3}}{4}\left[4k-\frac{k^3}{3}\right]_{-2}^2$		
	$=\frac{\sqrt{3}}{4}\left[\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)\right]$		
	$=\frac{\sqrt{3}}{4}\cdot\frac{32}{3}$		
	Volume = $\frac{8\sqrt{3}}{3}$ units ³	1	

Ques	tion 4 Trial HSC Examination - Mathematic	s Extension 2	2010
Part	Solution	Marks	Comment
b)	At x = k	5	
	y = 5k	$-k^2$	
	Let thickness of s be δk	shell	
		hell	
	$\delta V = \pi \left(k^2 - (k - \delta k)^2 \right)$ $= \pi \left(2k\delta k - \delta k^2 \right) y$	y 1	Can use form
	As $\delta k \to 0$		
	$V = \int_0^3 2\pi k y dk$	1	
	$=2\pi\int_{1}^{3}k\left(5k-k^{2}\right)dk$	1	
	$=2\pi \left[\frac{5}{3}k^{3}-\frac{k^{4}}{4}\right]_{1}^{3}$		
	$=2\pi\left[\left(45-\frac{81}{4}\right)-\left(\frac{5}{3}-\frac{1}{4}\right)\right]$		
	Volume = $\frac{140\pi}{3}$ units ³	1	

Quest	Ouestion 4 Trial HSC Examination - Mathematics Extension 2			2010
Part	Solution		Marks	Comment
c)	$X\left(\sqrt{X} - 3\right) = \sqrt{X} = \frac{-6}{X}$	$ \sqrt{X} $ $ -3X + 9 = 0 $ $ -3) = -9 $ $ = \frac{-9}{X} $	1	Any method
	Required $x^3 - 9x^2$	$-\frac{1}{X} + 9$ $-54X + 9X^{2}$ I equation is $+54x - 81 = 0$ equation in (i) sum of roots is given by	1	
and the second s	$\alpha^2 + \beta^2$ Now, in α	$+\chi^{2} = \frac{-b}{a} = 9$ original equation $x^{3} - 3\alpha^{2} + 9 = 0$ $x^{3} - 3\beta^{2} + 9 = 0$ as $x = \alpha, \beta, \chi$ are roots $x^{3} - 3\chi^{2} + 9 = 0$	1	Any method
	$\alpha^3 + \beta^3$	$+ \chi^3 - 3(\alpha^2 + \beta^2 + \chi^2) + 27 = 0$ + \chi^3 - 3(9) + 27 = 0 \(^3 + \chi^3 = 0\)		
	·		1	
d)	$\therefore P'(x)$	$= (x - \alpha)^{2} Q(x)$ $= 2 (x - \alpha) Q(x) + (x - \alpha)^{2} Q'(x)$ $= (x - \alpha) [2 Q(x) + (x - \alpha) Q'(x)]$	1 1	
	$\therefore P'(x)$	has a single root at $x = \alpha$		
			/15	

Quest	Question 5 Trial HSC Examination - Mathematics Extension 2			2010
Part	Solution		Marks	Comment
a)		$POQ = \theta$ and $\angle OQP = \alpha$ when $OQ = 5m$, $\angle OPQ = 90^{\circ}$		
	Verticall	y at Q $T_1 \cos \alpha = 2g$ $T_1 \cdot \frac{3}{5} = 2g$		
	**	$\therefore T_1 = \frac{10g}{3} N$	1	
	Verticall	y at P $T_2 \cos \theta = T_1 \cos \alpha + 3g$ $T_2 \cdot \frac{4}{5} = 2g + 3g$		1 for correct resolving
		$T_2 = \frac{25g}{4} N$	2	
	ii. Horiz	ontally at P $T_1 \sin \alpha + T_2 \sin \theta = 3rw^2$	1	
	Ü	$\frac{r}{4} = \sin \theta = \frac{3}{5}$ $r = \frac{12}{5}$	1	
		$\frac{10g}{3} \cdot \frac{4}{5} + \frac{25g}{4} \cdot \frac{3}{5} = 3 \cdot \frac{12}{5} \cdot w^{2}$ $\frac{77g}{12} = \frac{36}{5} w^{2}$		
		$\therefore w^2 = \frac{1925}{216}$ $\therefore w = 3 \cdot 0$ Velocity $3 \cdot 0$ rad s^{-1}	1	

Quest	Question 5 Trial HSC Examination - Mathematics Extension 2				
Part	Solution	Marks	Comment		
b)	Let $y = \frac{u(x)}{v(x)}$ $\therefore \ln y = \ln [u(x)] - \ln [v(x)]$ $\frac{1}{y} \cdot \frac{dy}{dx} = \frac{u'(x)}{u(x)} - \frac{v'(x)}{v(x)}$ $\frac{v(x)}{u(x)} \cdot \frac{dy}{dx} = \frac{u'(x)}{u(x)} - \frac{v'(x)}{v(x)}$	1			
	$\frac{dy}{dx} = \frac{u'(x)}{v(x)} - \frac{v'(x) \cdot u(x)}{[v(x)]^2}$ $\therefore \frac{dy}{dx} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2}$	1			
c)	i. $I_n = \int \tan^n x dx$				
	$= \int \tan^2 x \cdot \tan^{n-2} x dx$ = $\int (\sec^2 x - 1) \tan^{n-2} x dx$	1 1			
	$= \int \sec^2 x \tan^{n-2} x dx - \int \tan^{n-2} x dx$	1			
	$= \frac{1}{n-1} \tan^{n-1} x - I_{n-2}$	1			
	ii. $\int_0^{\frac{\pi}{4}} \tan^3 x dx = \left[\frac{1}{2} \tan^2 x\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan x dx$	1			
	$= \frac{1}{2} [1 - 0] + [\ln(\cos x)]_0^{\frac{\pi}{4}}$	1			
	$= \frac{1}{2} + \left[\ln \left(\frac{1}{\sqrt{2}} \right) - \ln 1 \right]$				
	$=\frac{1}{2} + \ln \frac{1}{\sqrt{2}}$	1			
	- V2	/15			

Ques	uestion 6 Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
a)	i. $\ddot{x} = g - kv$	1	
	ii. $\ddot{x} = \frac{dv}{dt} = g - kv$		
	$\frac{dt}{dv} = \frac{1}{g - kv}$		
	$t = -\frac{1}{k}\ln\left(g - kv\right) + c$	1	
	When $t = 0$, $v = 0$		
	$\therefore c = \frac{1}{k} \ln g$		
	$\therefore t = \frac{1}{k} \ln g - \frac{1}{k} \ln (g - kv)$		
	$kt = \ln\left(\frac{g}{g - kv}\right)$	1	
	$e^{kt} = \frac{g}{g - kv}$		
	$ge^{kt} - kve^{kt} = g$		
	$ge^{kt} - g = kve^{kt}$		
	$g\left(e^{kt}-1\right)=kve^{kt}$		
	$\therefore v = \frac{g}{k} \left(1 - e^{-kv} \right)$	1	
		·	

Ques	tion 6	Trial HSC Examination - Mathematics Exte	ension 2	2010
Part	Solution		Marks	Comment
a)		$\frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ $\frac{d}{dy} \left(\frac{1}{2} v^2 \right) \cdot \frac{dv}{dx}$		
	$\therefore v \frac{dv}{dx} =$		1	
	$\frac{dx}{dv} =$	$\frac{g - kv}{v}$ $= \frac{v}{g - kv}$	1	
		$= \frac{1}{k} \left[\frac{v}{\frac{g}{k} - v} \right] = \frac{1}{k} \left[\frac{v - \frac{g}{k}}{\frac{g}{k} - v} + \frac{\frac{g}{k}}{\frac{g}{k} - v} \right]$	interpretation of the state of	
		$= \frac{1}{k} \left[-1 + \frac{\frac{g}{k}}{\frac{g}{k} - v} \right]$ $= \frac{1}{k} \left[-v - \frac{g}{k} \ln \left(\frac{g}{k} - v \right) \right] + c$		
	When x	$= \frac{1}{k} \left[-v - \frac{1}{k} \ln \left(\frac{1}{k} - v \right) \right] + c$ $= 0, v = 0$ $= \frac{1}{k} \cdot \frac{g}{k} \ln \frac{g}{k}$	1	
		$\frac{1}{k} \left[\frac{g}{k} \ln \frac{g}{k} - v - \frac{g}{k} \ln \left(\frac{g}{k} - v \right) \right]$		
		$= \frac{1}{k} \left[\frac{g}{k} \ln \left(\frac{\frac{g}{k}}{\frac{g}{k} - v} \right) - v \right]$ $= \frac{g}{k^2} \left[\ln \left(\frac{g}{g - kv} \right) - \frac{kv}{g} \right]$		
i	x	$= \frac{1}{k^2} \left[\frac{m}{g - kv} \right] - \frac{1}{g}$	1	

Quest	ion 6 Trial HSC Examination - Mathematics Exte	2010	
Part	Solution		Comment
b)	i. $z^4 = \cos 4\theta + i\sin 4\theta$ also by expansion $= c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$	1	
	Where $c = \cos \theta$ and $s = \sin \theta$ $= c^4 + s^4 - 6c^2s^2 + 4i(c^3s - cs^3)$ Equating real parts $\cos 4\theta = \cos^4 \theta + \sin^4 \theta - 6\cos^2 \theta \sin^2 \theta$ $= \cos^4 \theta + (1 - \cos^2 \theta)^2$ $- 6\cos^2 \theta (1 - \cos^2 \theta)$	1	
	$= \cos^4 \theta + 1 - 2\cos^2 \theta + \cos^4 \theta$ $- 6\cos^2 \theta + 6\cos^4 \theta$ $= 8\cos^4 \theta - 8\cos^2 \theta + 1$ ii. $\cos 4\theta = -1$ (Equating real parts)	1	
	$\therefore 4\theta = \pi, -\pi, 3\pi, -3\pi$ $\theta = \frac{\pi}{4}, -\frac{\pi}{4}, \frac{3\pi}{4}, -\frac{3\pi}{4}$	1	
	$\therefore \text{Roots are } cis \frac{\pi}{4}, cis \left(-\frac{\pi}{4}\right), cis \frac{3\pi}{4}, cis \left(-\frac{3\pi}{4}\right)$ iii. $z + \frac{1}{2} = 2 \cos \theta$	1	
	$\left(z + \frac{1}{z}\right)^4 = 16\cos^4\theta$ $LHS = z^4 + 4z^3 \cdot \frac{1}{z} + 6z^2 \cdot \frac{1}{z^4} + 4z \cdot \frac{1}{z^3} + \frac{1}{z^4}$		
	$= z^{4} + \frac{1}{z^{4}} + 4\left(z^{2} + \frac{1}{z^{2}}\right) + 6$ $\therefore 16\cos^{4}\theta = 2\cos 4\theta + 8\cos 2\theta + 6$	1	
	$\therefore \cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$	1	
		/15	

Ouestion 7 Trial HSC Examination - Mathematics Extension 2				
Part	Solution	Marks	Comment	
a)	i. $\cos [(k-1)\theta] - 2\cos\theta\cos k\theta$			
,	$= \cos k\theta \cos \theta + \sin k\theta \sin \theta - 2 \cos \theta \cos k\theta$			
	$= -\left(\cos k\theta \cos \theta - \sin k\theta \sin \theta\right)$			
	$=-\cos(k\theta+\theta)$			
	$=-\cos\left[\left(k+1\right)\theta\right]$	1		
	ii. When $n = 1$			
	LHS = 1 RHS = $\frac{1 - \cos \theta - \cos \theta + \cos \theta}{2 - 2 \cos \theta}$			
	$=\frac{2-2\cos\theta}{2-2\cos\theta}=1=LHS$	1		
	\therefore True for $n=1$			
	Assume true for $n = k$.			
	$1 + \cos \theta + \dots + \cos \left[\left(k - 1 \right) \theta \right] = \frac{1 - \cos \theta - \cos k\theta + \cos \left[\left(k - 1 \right) \theta \right]}{2 - 2 \cos \theta}$			
	When $n = k+1$			
	$1 + \cos \theta + \dots \cos [(k-1)\theta] + \cos k\theta$			
	$= \frac{1 - \cos \theta - \cos k\theta + \cos \left[(k-1)\theta \right]}{+ \cos k\theta}$	1		
	$2-2\cos\theta$			
	$= \frac{1 - \cos \theta - \cos k\theta + \cos [(k-1)\theta] + 2\cos k\theta - 2\cos \theta \cos k\theta}{1 + \cos \theta + \cos \theta}$			
	$2-2\cos\theta$			
	$= \frac{1 - \cos \theta + \cos k\theta - \cos [(k+1)\theta]}{2 - 2\cos \theta}$			
		1		
	$= \frac{1 - \cos \theta - \cos \left[\left(k + 1 \right) \theta \right] + \cos \left[\left(\left(k + 1 \right) + 1 \right) \theta \right]}{2 + \cos \theta}$,	
	$2-2\cos\theta$			
	If true for $n = 1$ then true for $n = 1 + 1 = 2$ etc \therefore By induction true for all n positive integers.	1		
	by induction true for all n posterve integers.		J	

Question 7 Trial HSC Examination - Mathematics Extension 2					
Part	Solution		Marks	Comment	
b)	Let Pulling for $\frac{dF}{dx} = -10$	ce = F and distance pulled up be x metres.			
	F = -10x + 6 When $x = 0$, $F = 250 - 6$ At the mass	=250	1		
	= 50 -	-10x - 200			
	$\therefore \ddot{x} = \frac{5}{2} - \frac{x}{2}$ $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) =$	$=\frac{5}{2}-\frac{x}{2}$	1		
	When $x = 0$, v				
	$\frac{1}{2}v^2 = \frac{5}{2}$ $v^2 = 5x$	<i>i</i>			
	When $x = 10$, \therefore The mass is	$v^2 = 0$ stationary.	1		
c)		= 5	1 1		
	∴Remainder	$\therefore a = 2, b = 1$ is $2x + 1$	1		
d)	$(x^{2} - 1)^{2} \ge 0$ $x^{4} - 2x^{2} + 1$ $x^{4} + x^{2} + 1$	$\geq 3x^2$	į		
	$\frac{x^4 + x^2 + 1}{x^2} \ge$		2		
e)	If $b = a + c$ Then $100a + c$	10(a+c)+c	1		
	= 110a - 11(10a)		1		
			/15		

Onestion 9	Trial HSC Examination - Mathematics Ext	ension 2	2010	Zuesi	
		Marks	Comment		
∴ PA Simil ii. Le ∴ ∠ DA ∴ △ A ∴ ∠ I BQ ∴ △ A ∴ ∠ E ∴ △ iii. F ∠ AP	Trial HSC Examination - Mathematics Extition PAD = \angle DCP = 90° (Radius is perpendicular to tangent at point of contact) DC is cyclic (Opposite angles supplementary) lar for CDBQ at \angle ADC = θ BQC = θ (Ext. angle of cyclic quadrilateral) = DC (Equal Tangents) ADC is isosceles DAC = \angle DCA = $\left(90 - \frac{\theta}{2}\right)^{\circ}$ = CQ (Equal radii) BQC is isosceles BCQ = \angle CBQ = $\left(90 - \frac{\theta}{2}\right)^{\circ}$ ADC \triangle BQC (AAA) From above $C = 180 - \theta$ (opposite \angle of PADC) $DC = \left(90 - \frac{\theta}{2}\right)^{\circ}$ (PD bisects \angle APC)		Comment Any fair proof	Part	

Quest	tion 8 Trial HSC Examination - Mathematics Ext	2010	
Part	Solution	Marks	Comment
b)	i. $P \sin \frac{\theta}{2}$ = $(1 + 2\cos \theta + 2\cos 2\theta + 2\cos 3\theta) \sin \frac{\theta}{2}$		
	$= \sin \frac{\theta}{2} + 2 \cos \theta + 2 \cos 2\theta + 2 \cos 3\theta \sin \frac{\theta}{2}$ $= \sin \frac{\theta}{2} + 2 \cos \theta \sin \frac{\theta}{2} + 2 \cos 2\theta \sin \frac{\theta}{2}$ $+ 2 \cos 3\theta \sin \frac{\theta}{2}$	1	
	$\therefore = \sin\frac{\theta}{2} + \sin\frac{3\theta}{2} - \sin\frac{\theta}{2} + \sin\frac{5\theta}{2} - \sin\frac{3\theta}{2} + \sin\frac{7\theta}{2} - \sin\frac{5\theta}{2}$	1	
	$= \sin \frac{7\theta}{2}$	1	
	ii. From (i) $P \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$		
	When $\theta = \frac{2\pi}{7}$		
	$P \sin \frac{\pi}{7} = \sin \pi$ $= 0$ As $\sin \frac{\pi}{7} \neq 0$ then $P = 0$	1	
	i.e. $1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta = 0$	1	
	iii. $P = 1 + 2 \cos \theta + 2(2\cos^2 \theta - 1) + 2(4 \cos^3 \theta - 3 \cos \theta)$ $= 8 \cos^3 \theta + 4 \cos^2 \theta - 4 \cos \theta - 1$ $P = 8x^3 + 4x^2 - 4x - 1$ when $x = \cos \theta$	1 1	
	From (ii) $P = 0 \text{ when } \theta = \frac{2\pi}{7}$		
	$\therefore x = \cos \frac{2\pi}{7} \text{ is a solution.}$	1	
		/15	