WESTERN REGION

2010 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 3 hours.
- o Write using a blue or black pen.
- o Board approved calculators may be
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-10.
- o All questions are of equal value.

and Town C is 40 km from Town A as shown below:

2010 Trial HSC Examination

Mathematics

Quest	ion 1	(12 Marks)	Use a Separate Sheet of paper	Marks
a)	Evalua	$\int_{1}^{5} (3x-7) dx$		1
b)	For the	e arithmetic sequence	•	
	2, 7, 1	2, 17,		
	i) ii) iii)	Write a rule to describe Find the 23 rd term Find the sum of the find	be the sequence in terms of $T_n = f(n)$ rst 47 terms	1 1 1
c)	Three	towns form a triangle.	Town A is 80 km from Town B	

40 km 80 km

The bearing of Town B from Town A is 130°. The bearing of Town C from Town A is 240°.

i)	Find the area enclosed by the 3 towns	2
ii)	Using the cosine rule, find the distance to the nearest kilometre	2
	between Town B and Town C	-

Express the following as a single fraction

$$\frac{5}{2a+6} + \frac{a}{a^2-9}$$

Solve |2x+5| < 32

End of Question 1

2

Question 2		(12 Marks)	Use a Separate Sheet of paper	Marks
a)	Differentiate with respects to		o x:	
		$\left(3x^2+7\right)^6$		2
	ii)	$4x^2e^{3x^3}$		2
	iii)	$\frac{\pi\cos x}{x^2}$		2
b)	Find	$\int \frac{dx}{3x+5}$		2
c)		ne $2x+3y-13=0$ is the condition of the equation of the	ranslated 5 units up and parallel to the s transformation.	2
d)		he angle in degrees and with the positive x ax	d minutes, that a line with gradient -2.5 is.	2

End of Question 2

Quest	ion 3	(12 M	Marks) Use a Separate Sheet of paper	Marks
a)	Find	$\lim_{x \to 3} \frac{x^2 + 1}{x^2}$	+8x+15 x+3	2
b)	Evalu	ate $\int_{0}^{\frac{\pi}{6}} (x$	$(x^2 + \sin 2x) dx$	2
c)	differ	ent tick	cickets in a car raffle in which 350 tickets are sold. Three ets are to be drawn out. First prize is the car, second prize is voucher and third prize is a Blue Ray player.	
	i) ii)		a tree diagram to represent this information e or otherwise find the probability that:	2
		$\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$	Jake wins all three prizes Jake wins at least 1 prize	1 1
d)	Find t	he equa	ation of the parabola that passes through the points	2
			(0,-8),(-2,-10),(3,10)	
e)	For th	e curve	$ey = \sin \pi x$, state the period and amplitude	2

a)	Find the gradient of the line AB	1
b)	Show the distance AB is $\sqrt{13}$ units	2
c)	Show the equation of the line CD is $2x-3y+11=0$	2
d)	Find the perpendicular distance from the line CD to the point A	2
e)	The distance between C & D is to be $\sqrt{117}$ units. Find the coordinates of point D, assuming $x < 0$	3
f)	Hence or otherwise find the area of the quadrilateral ABCD	2

End	of Question	4

Question 5		(12 Marks)	Marks	
a)		Calculate the area of the region enclosed by the graph of $y = \cos 2x$ the x axis and the lines $x = 0$ and $x = \frac{\pi}{4}$		
b)	The re	oots of the equatio	on $2x^2 - 7x + 12 = 0$ are α and β	
	i)	$\alpha + \beta$		1
	ii)	αβ		1
	iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$		2
	iv)	$\alpha^2 + \beta^2$		2
c)	For th	ne curve $y = 2x^3 -$	$-12x^2 - 5x - 3$ find:	
	i)	Any points of in	nflexion	2
	ii)	The equation of inflexion.	the normal to this curve at the point of	2

Marks

3

3

2

Question 6 (12 Marks)

Use a Separate Sheet of paper

a)

Given AD = AB, DB = DC, AD \parallel BC and $\angle DAB = 100^{\circ}$ Find $\angle BDC$ giving reasons for each step.

b)

ABCD is a parallelogram

AS = CT

Prove DS = BT

- The gradient function of a curve is $y' = \frac{4x}{x^2 + 1}$ and the curve passes through the point (0, e). Find the equation of the curve.
- d) The number of bacteria N a person has after being infected with a virus after t hours is given by:

$$N = 10000e^{0.05t}$$

i)	Find the number of bacteria after 10 hours	1
ii)	Find the time required for the number of bacteria to reach 100000	2
iii)	At what rate is the bacteria increasing after 1 day	T

End of Question 6

Question 7		(12 Marks) Use a Separate Sheet of paper						Marks
a)	i)	Given	$f(x) = \sqrt{4 - 4}$	$-x^2$ complet	e the table o	f values to 3	decimal place	es.
		<i>x f(x)</i>	0	0.5	1	1.5	2	1
	ii)	Hence	e evaluate an		0	$-x^2 dx$ using		2
b)	- I		on a grandfat ngth of the ar		_	When it swir	ngs the	
	i)	In rad	lians find the	angle throug	h which the	pendulum sv	wings.	1
	ii)		the shortest d pendulum.	istance betw	een the max	imum positic	ons	2
c)	i)	Diffe	rentiate $y = 3$	3^{4x-2} with re	spects to x			3
	ii)	Hence	e find:					
		$\int 3^{4x}$	$^{-2} dx$					1
d)	x = -	3 and x	nded by $y^2 =$ = 1 is revolv if this area is	ed about the	x axis. Calc	ılate the volu	ime of the	2

Question 8		(12 Marks)	Jse a Separate Sheet of paper	Marks		
comp		arn borrows \$500 000 to buy a house. An interest rate of 9% p.a. mpounded monthly is charged on the outstanding balance. The loan is be repaid in equal monthly instalements (R) over a 25 year period.				
	i)	Show the amount owing	g after 3 months is:	2		
	•	$A_3 = 500000 (1.0075)^3 -$	$-R[1+1.0075+1.0075^2]$			
	ii)	Assuming this pattern calculated using:	continues the monthly repayment can be	2		
		$A_n = 500000 (1.0075)^n$	$-R \left[1+1.0075+1.0075^{2}+\dots+1.0075^{n-1}\right]$			
		How much should Tiarr	n be paying each month?			
	iii)	How much interest doe	s Tiarn pay over the 25 years?	1		
	iv)	What is the equivalent	simple interest rate of this loan?	1		
b)	or Mo	dern History. Students ca red, 73 do Ancient Histor	School, every student must do Ancient History an also do both. In a group of 140 students ry and 82 students do Modern History. If one om Year 12, find the probability that this student			
	i) ii) iii)	both Ancient History at Ancient History only? Modern History only?	nd Modern History?	1 1 1		
c)	If $f(z)$	$(x) = 4 - 2^{-x}$ find:				
		$f(x^2)$ $[f(x)]^2$ Is $f(x)$ even, odd or n	either	1 1 1		

End of Question 8

Questi	on 9	(12 Marks)	Use a Separate Sheet of paper	Marks
		$\frac{e^{y} - e^{-y}}{2}$ use the son terms of x.	substitution $m = e^y$ to solve the equation	4
b)	The ac $a = -2$	occeleration a ms ⁻² a 2. Initially the part	of a moving particle is given after t seconds by ticle is located at $x = -3$ and its velocity is 4 ms ⁻¹	
	i)	Find the velocity	(v) and displacement (x) as functions of time (t)	2
	ii)	Determine when	the particle is at rest.	2
	iii)	When will the pa	article first be at the origin?	2
	iv)	Sketch displacen	pent (x) as a function of time (t)	2.

Quest	ion 10	(12 Marks) Use a Separate Sheet of paper	Marks
a)	water	mming pool is to be emptied for maintenance. The quantity of Q litres, remaining in the pool at anytime, t minutes, after it starts pty is given by:	
		$Q(t) = 2000(25 - t)^2, t \ge 0$	
	i)	At what rate is the pool being emptied at any time (t)	1
	ii)	How long will it take to half empty the pool to the nearest minute?	2
	iii)	At what time is the water flowing out at 20 kL / minute.	2
	iv)	What is the average water flow in the first 10 minutes in litres?	2
b)	point is 6 ki	is on a paddle board in the ocean 3 kilometres from the nearest O on a straight beach. He needs to meet his friend Josh who ilometres along the beach from O. Adam is able to paddle at a rate of 4km/h ralk at a rate of 5km/h.	
	i)	Draw a diagram to represent this information.	1
	ii)	Show the total time $T(x)$ hours, for Adam to reach Josh is given by:	2
		$T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$	
	iii)	Find the minimum time for Adam to reach Josh on the beach.	2

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

WESTERN REGION

2010 TRIAL HSC EXAMINATION

Mathematics

SOLUTIONS

Ques	ion 1 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	$\int_{1}^{5} (3x - 7) dx$ $= \left[\frac{3x^2}{2} - 7x \right]_{1}^{5}$	1	
	$= (\frac{75}{2} - 35)(\frac{3}{2} - 7)$ $= 8$ i) 2,7,12,17,		
b)	$T_n = 5n - 3$	1	
	ii) $T_{23} = 5 \times 23 - 3$ = 112	1	
	iii) $S_n = \frac{n}{2} [2a + (n-1)d]$ = $\frac{47}{2} [2 \times 2 + (47 - 1)5]$		
	= 5499	1	
c)	i) $A = \frac{1}{2}ab \sin C$ $A = \frac{1}{2} \times 40 \times 80 \times \sin 110^{\circ}$	2	1
	$A = \frac{1}{2} \times 40 \times 80 \times \text{SH110}$ $= 1503.5 \text{km}^2$		1
	ii) $a^2 = b^2 + c^2 - 2bc \cos A$ $a^2 = 40^2 + 80^2 - 2 \times 40 \times 80 \times \cos 110^\circ$ $a^2 = 10188.93$	2	1
	a = 100.9 $a = 101km$		1

Quest	ion 1 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
d)	$\frac{5}{2a+6} + \frac{a}{a^2-9}$ $= \frac{5}{2(a+3)} + \frac{a}{(a+3)(a-3)}$ $= \frac{5(a-3)+2a}{2(a+3)(a-3)}$	2	1
	$= \frac{5a-15+2a}{2(a+3)(a-3)}$ $= \frac{7a-15}{2(a^2-9)}$		1
e)	2x+5 < 3 2x+5 < 3 or $2x+5 > -32x < -2$ $2x > -8x < -1$ $x > -4check\therefore -4 < x < -1$	2	Only 1 if both cases not considered
		/12	

Ques	tion 2	Tri	ial HSC Exa	mination -	Mathemati	cs		2010
Part	Solution	n				M	larks	Comment
a)	i) $\frac{d}{dx}$ (3) $= 6 \times 6x$ (4)					2	·	1
	= 36x(3x)	,	7)5					1
	$\begin{vmatrix} ii \\ u = 4x^2 \\ u' = 8x \end{vmatrix}$	<i>y</i> =				2		
		$ce^{3x^3} +$	$4x^2 \times 9x^2e^{3x}$	x ³				1
	$=4xe^{3x^3}$ iii) $\frac{\pi c}{c}$	_	-			2		
	$u = \pi \cos u$ $u' = -\pi \sin u$	$\cos x$ $\sin x$	$v = x^2$ $v' = 2x$					1
			$\frac{(x^2)^2}{(x^2)^2}$ $\frac{x - 2\cos x}{4}$	<u> </u>				1
b)	$=\frac{\pi(-x)}{}$	$\sin x$ x^3	$\frac{-2\cos x}{3}$			2		1
0)	$ \begin{vmatrix} \int \frac{dx}{3x+5} \\ = \frac{1}{3} \int \frac{3}{3x} \end{vmatrix} $		lx					1
	$=\frac{1}{3}\ln(3x)$	3x + 5)+ <i>C</i>					1

Quest	tion 2	Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
c)	2x+3y-	-13 = 0	2	
	$y = \frac{-2x}{3}$	<u>+13</u>		
	$m_1 = -\frac{2}{3}$			
	parallel	$m_1 = m_2$		
	$b_1 = \frac{13}{3}$			1
	transfort	nation up 5 units		
	$b_2 = \frac{13}{3} +$	-5		
	$=\frac{28}{3}$			
	$\therefore y = -\frac{2}{3}$	$\frac{2}{3}x + \frac{28}{3}$		
	3y+2x-	-28 = 0		1
d)	$m = \tan \theta$	9	2	
	-2.5 = ta	$\ln heta$		1
	$\theta = -68^{\circ}$	12'		1
	$\therefore \theta = 180$	0°-68°12′		
	=111°48	i 		1
			/12	•

Ques	ion 3 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	$\lim_{x \to 3} \frac{x^2 + 8x + 15}{x + 3}$	2	
	$\frac{0}{0}$ DNE : factorise		
	$\lim_{x\to 3} \frac{(x+5)(x \not \times 3)}{x \not \times 3}$		1
	= 3+5 = 8		1
b)	$\int_{0}^{\frac{\pi}{6}} x^2 + \sin 2x \ dx$	2	
	$= \left[\frac{x^3}{3} - \frac{1}{2}\cos 2x\right]_0^{\frac{\pi}{6}}$		1
	$= \left[\frac{\left(\frac{\pi}{6}\right)^3}{3} - \frac{1}{2}\cos(\frac{2\pi}{6}) \right] - \left[-\frac{1}{2}\cos 0 \right]$		
	$=\frac{\pi^3}{648} - \frac{1}{4} + \frac{1}{2}$ $= 0.298$		1

Quest	tion 3	Trial HSC Examination -	Mathematics		2010
Part	Solution			Marks	Comment
c)	i)	3 348	WWW	2	1 for correct diagram 1 for correct fractions
	$\frac{5}{350}$	349 345 348	WLW		
		$\frac{4}{348}$	WLW		
		349 344 348	WLL		
		$\frac{4}{348}$	LWW		
	$\frac{345}{350}$	$\frac{349}{348}$ $\frac{344}{348}$	LWL		
	\	$\begin{array}{c} 5 \\ 344 \end{array}$	LLW		
		$ \begin{array}{c} 349 \\ \underline{343} \\ 348 \end{array} $	LLL		
	ii) α) $\frac{5}{350} \times \frac{4}{349}$	$\times \frac{3}{348}$			
	$=\frac{1}{708470}$			1	
	$\beta)$ $1 - P(L)$ $= 1 - \left[\frac{345}{350} \right]$	$\times \frac{344}{349} \times \frac{343}{348}$			
	= 0.042	טייט טייט (מייט (מ		1	

Quest	tion 3	Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
d)	$y = ax^2 + b$	x+c	2	
	pt(0,-8)			
	8 = 0 + 0 +	c		
	∴ <i>c</i> = -8			
	pt(3,10)			
	-10 = 4a -	2b+c		
	-10 = 4a	2b-8		
	-2 = 4a - 2			1
	-1=2a-b	2(1)		
	pt(3,10)			
	10 = 9a + 3			
	10 = 9a + 3			
	18 = 9a + 3			
	6 = 3a + b.	• •		
	solve simu	ltaneously		
	(1)+(2)			
		D(1)		
		(2)		
	5a = 5			
	a=1			
	6 = 3 + b			
	b=3			
	$\therefore y = x^2 +$	3x-8		1
e)	A manifer de	-1	2	1
	Amplitude			
	Period = $\frac{2}{3}$	$\frac{1}{\pi} = 2$		1
			/12	
L	1			I

Quest	ion 4 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	$m_{AB} = \frac{6-4}{-1-4}$ $= \frac{2}{3}$	1	
1,	3		1
	$d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$ = $\sqrt{(6 - 4)^2 + (-14)^2}$	2	
:	$= \sqrt{2^2 + 3^2}$ $= \sqrt{13}units$		1
	$y - y_1 = m(x - x_1)$		1
1 7	$y - y_1 - m(x - x_1)$ $y - 5 = \frac{2}{3}(x - 2)$	2	
	3y-15 = 2x+4 2x-3y+11 = 0		1
d)	$\int_{a} ax_1 + by_1 + c $		1
(a)	$d_{\perp} = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$ $= \frac{ 2 \times -4 + -3 \times 4 + 11 }{\sqrt{2^2 + (-3)^2}}$	2	
	• • •		1
	$= \frac{ -8 - 12 + 11 }{\sqrt{13}}$ $= \frac{9}{\sqrt{13}}$		
	$-\sqrt{13}$ $=\frac{9\sqrt{13}}{13} units$		1
	13		1

Ques	tion 4	Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
e)			3	
	$d = \sqrt{(y)}$	$(-y_1)^2 + (x-x_1)^2$		
	$\sqrt{117} = \sqrt{117}$	$\sqrt{(y-5)^2+(x-2)^2}$		
	v^2-10v	$+25+x^2-4x+4=117$		
		$+x^2-4x=88(1)$		
	2x-3y-	-11 = 0		
	*			1
	$y = \frac{2x}{3}$	<u>11</u> (2)		1
	sub (2)			
	$\left[\left(\frac{2x+1}{3}\right)\right]$	$\left(\frac{1}{3}\right)^2 - 10\left(\frac{2x+11}{3}\right) + x^2 - 4x\right] = 88$		
	$\frac{4x^2+44}{9}$	$\frac{x+121}{x} - \left(\frac{20x+110}{3}\right) + x^2 - 4x - 88 = 0$		
	$4x^2 + 44$	$x + 121 - 60x - 330 + 9x^2 - 36x - 792 = 0$		
	$13x^2 - 52$	2x - 1001 = 0		
	$x^2 - 4x -$	77 = 0		
	(x-11)(x-11)	(x+7)=0		1
	$\therefore x = 11$	or $x = -7$		
	<i>x</i> < 0			
	$\therefore x = -7$			
	when x	$=-7$ $y=\frac{2\times -7+11}{3}$		
	∴ D(-7-	5		1
	4			
f)	$A = \frac{1}{2}h($	(a+b)	2	
1)				1
	$A = \frac{1}{2} \times \frac{1}{2}$	$\frac{0\sqrt{13}}{13} \times (\sqrt{13} + \sqrt{117})$		
	=18units	2		1
			11.5	
			/12	

Quest		Trial HSC Examination - Mathematics		2010
Part	Solution	i	Marks	Comment
a)	$\int_{0}^{\frac{\pi}{4}} \cos 2x$ $= \left[\frac{1}{2} \sin \frac{1}{2$	$2x$ $\int_{0}^{\frac{\pi}{4}}$	2	1
	$= \frac{1}{2} \times 1$ $= \frac{1}{2} unit^{2}$	$\frac{7}{2} - \frac{1}{2}\sin 0$		1
b)	$2x^2 - 7x$ $\alpha + \beta = 0$ i)	$\frac{-b}{a} \alpha \beta = \frac{c}{a}$ $\frac{-b}{a} = \frac{-7}{2}$	1	
	ii) $\alpha\beta = \frac{c}{a} = 6$ iii) $\frac{1}{\alpha} + \frac{1}{\beta} = 6$		1	1
	$=\frac{\left(\frac{7}{2}\right)}{6}$ $=\frac{7}{12}$			1
	$= \left(\frac{7}{2}\right)^2 -$	$-\beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ -2×6	2	1
	$=\frac{1}{4}$			1

Quest	tion 5 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
c)	i) $y = 2x^3 - 12x^2 - 5x - 3$	2	-
	$y' = 6x^2 - 24x - 5$		
	y'' = 12x - 24		1
	for inflexions $y'' = 0$		
	0 = 12x - 24		
	0=12(x-2)		
	\therefore possible inflexion at $x = 2$		
	check change of concavity		
	/+ve		
	-ve / 2		
	when $x = 2$		
	$y = 2 \times (2^3) - 12 \times (2^2) - 5 \times 2 - 3$		
	y = -45		1
	$\therefore pt$ of inflexion at $(2,-45)$		
	ii) m when $x = 2$	2	
	$y' = 6x^2 - 24x - 5$	_	
	$=6\times(2)^2-24\times2-5$		
	= 24 - 48 - 5		
	= -29		
	$\therefore m_1 = -29$		1
	for normal $\perp m_1 \times m_2 = -1$		
	$\therefore m_2 = \frac{1}{29}$		
3	2)		
	at(2,-45)		
	$y45 = \frac{1}{29}(x-2)$		
	29y + 1305 = x - 2		1
	x - 29y - 1307 = 0		
		/12	
		/12	

Quest	tion 6 Trial HSC Examination - Mathematic	2010	
Part	Solution	Marks	Comment
a)	Let $\angle ADB = x^{\circ}$	3	1
	$\triangle ADB$ is isosceles $(AB = AD)$		
	$\angle ADB = \angle ABD(base \ angles \ of \ \Delta ADB =)$		
	then $2x+100=180^{\circ}$ (angle sum Δ)		
	$so x = 40^{\circ}$		1
	∴ ∠ADB = 40°		1
	then $\angle DBC = 40^{\circ} (alt \angle s = AD \Box BC)$		
	∴ ΔDBC is isosceles (DB=DC)		
	$\therefore \angle DBC = 40^{\circ}(base \angle 's \triangle DBC)$		
	$\therefore \angle BDC = 180^{\circ} - 40^{\circ} - 40^{\circ} (angle \text{ sum } \Delta DBC)$		
	=100°		
	∴ ∠BDC = 100°		1
b)	i)	3	
	Prove $DS = BT$		
	AS = TC(given)		1
	$AD = BC(opp \ sides \ parallelogram =)$		
	$\angle DAS = \angle BCT(opp \angle's \text{ parallelogram} =)$		1
	$\therefore \Delta DAS \equiv \Delta BCT(SAS)$		
	ii)		1
	$\therefore \Delta DAS \equiv \Delta BCT$		1
	$DS = BT(corresponding \ side \ s \ \ in \equiv \Delta =)$		
c)	$y' = \frac{4x}{x^2 + 1}$	2	
			1
	$y = 2 \int \frac{2x}{x^2 + 1} dx$		
	$=2\ln\left[x^2+1\right]+c$		
	when $x = 0$ $y = e$		
	$e = 2\ln\left[0+1\right] + c$		
	$\therefore c = e$		1
	$\therefore y = 2\ln\left[x^2 + 1\right] + e$		

Question 6 Trial HSC Examination - M		Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
d)	i)		1	
	N = 100	$100e^{0.05t}$		
	N = 100	$000e^{0.05 \times 10}$		
	N = 164	87		1
	ii)			
	100000	$=10000e^{0.05t}$	2	
	$10 = e^{0.0}$	5t		1
	ln 10 = 1	$n(e^{0.05t})$		
	$ \ln 10 = 0 $	$0.05t(\ln e)$		
	$t = \frac{\ln 10}{100}$) -		
	0.05			
	= 46hoi	urs		1
	iii)			
	N' = 50	$0e^{0.05t}$	1	
	when t	= 24hours		
	N' = 50	$0e^{0.05 \times 24}$		
	=1660	bacteria/hour		1
			/12	

Quest	stion 7 Trial HSC Examination - Mathematics							2010
Part	Solution						Marks	Comment
a)	<i>x f(x)</i>	0 2	0.5 1.936	1 1.732	1.5 1.323	0	1	1
	$\int_{a}^{b} f(x) dx$	$\approx \frac{h}{3}[(y_0)$	$(y_n) + (y_n) + (y_n)$	(4×odds))+(2×e1	vens)]	2	1
	$\approx \frac{0.5}{3} [(2+0) + 4(1.936 + 1.323) + 2(1.732)]$						1	
	≈ 3.083	or $3\frac{1}{12}$						1
b)	i) $l = r\theta$						1	
	40 = 506	7						
	$\theta = \frac{40}{50}$							1
	$\theta = 0.8rc$	adians						
	$\begin{vmatrix} ii \\ a^2 = b^2 + a^2 \end{vmatrix}$	$+c^2-2b$	$c\cos A$				2	
	$a^2 = 50^2$	$+50^{2}$ $-$	2×50×50	$0 \times \cos \frac{4}{5}$				1
	a = 38.9	4cm						1
c)	$i) y = 3^{4x-2}$!					3	
	4x-2 =	$\log_3 y$					O TOTAL CONTRACTOR OF THE PARTY	1
	4x-2=	111.5						
	$x = \frac{\ln y}{\ln 3}$	+2						
	$x = \frac{\ln y}{4 \ln x}$							
	1111	<i>-</i>						1
	$\frac{dx}{dy} = \frac{1}{4 \ln x}$	•						_
	$=\frac{1}{4\ln 3}$							
	$\frac{dy}{dx} = 4 \ln x$	n 3 <i>y</i>						
	$=4\ln 3($	3^{4x-2})						1
L	L						J	

Quest	ion 7 Trial HSC	C Examination - Mathemat	ties	2010
Part	Solution		Marks	Comment
;)	ii)		1	
	$\int 3^{4x-2} dx$			
	$= \frac{1}{4 \ln 3} \int 4 \ln 3 (3^{4x-2})$?)		
	$= \frac{1}{4 \ln 3} \times (3^{4x-2}) + c$			
	$=\frac{(3^{4x-2})}{4\ln 3}+c$			1
i)	$y^2 = 3 - 2x - x^2$		2	
	$V = \pi \int_{a}^{b} y^{2} dx$ $V = \pi \int_{-3}^{1} 3 - 2x - x^{2} dx$			
	$V = \pi \int_{-3}^{1} 3 - 2x - x^2 dx$	^t x		1
	$= \pi \left[3x - x^2 - \frac{x^3}{3} \right]_{-3}^{1}$			
	$=\pi\bigg[\bigg(3-1-\frac{1}{3}\bigg)-\big(-\frac{1}{3}-\frac{1}{3}\bigg)\bigg]$	-9-9+9)]		
	$=\frac{32\pi}{3}$			1
			/12	

Quest		Trial HSC Examination - Mathematics		2010	
Part	Solution		Marks	Comment	
a)	i) $r = 9 \div 10$	in · 12	2		
	r = 0.007				
	$A = P(1+r)^n$				
	$A_1 = 5000$	$000(1.0075)^1 - R$		1	
	$A_2 = A_1(1$	$(0.0075)^1 - R$			
1	_	$000(1.0075)^2 - R(1.0075) - R$			
		$(.0075)^{1} - R$			
		$000[(1.0075)^2 - R(1.0075) - R](1.0075) - R$			
		$(1.0075)^3 - R(1.0075)^2 - R(1.0075) - R$			
	= 500000	$0(1.0075)^3 - R[1+1.0075+1.0075^2]$		1	
	as requir	red			
	ii)				
		all money is repaid	2		
		000(1.0075) ³⁰⁰ –		1	
		$075 + 1.0075^2 + \dots + 1.0075^{n-1}$		•	
	$R = \frac{1}{1+1}$	$\frac{500000(1.0075)^{300}}{1.0075+1.0075^{2}++1.0075^{n-1}}$			
		c series with $a = 1, r = 1.0075, n = 300$			
	$S_n = \frac{a(r)}{r}$	$\left(\frac{n-1}{n-1}\right)$			
	1(1	$\frac{1.0075^{300} - 1}{1.0075 - 1}$			
	S ₃₀₀ =	1.0075 – 1			
		21.121937			
	$R = \frac{5000}{1000}$	$\frac{000(1.0075)^{300}}{S_{300}}$			
	R = \$419			1	
	iii)				
	_	aid = \$4195.98×300	1		
	= \$12587				
	= \$75879	= \$1258794 500000 04.00		1	
	-ψ13013			1	

Quest	tion 8 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	iv) SI = Pr n $758794 = 500000 \times r \times 25$ r = 6.07%	1	1
b)	r = 6.07% AH MH 58 BOTH 67		
	i) $\frac{15}{140} = \frac{3}{28}$ ii) $\frac{58}{140} = \frac{29}{70}$	1	
	iii) $\frac{67}{140}$	1	
c)	i) $f(x) = 4 - 2^{-x}$ $f(x^2) = 4 - 2^{-x^2}$	1	
	ii) $[f(x)]^{2} = [4-2^{-x}] \times [4-2^{-x}]$ $= 16-2^{3} \times 2^{-x} + (2^{-x})^{2}$ $= 16-2^{3-x} + 2^{-2x}$ iii) $f(-x) = 4-2^{-(-x)}$	1	
	$f(-x) = 4 - 2^{-x}$ $= 4 - 2^{x}$ $\neq f(x)or - f(x)$ $\therefore \text{ the function is neither odd nor even}$	1 / 12	

Quest	ion 9 Trial HSC Examination - Mathematics	2010	
Part	Solution	Marks	Comment
a)	$e^{y}-e^{-y}$	4	
	$x = \frac{e^{y} - e^{-y}}{2}$		
	Let $m = e^{y}$		
	$x = \frac{m - \frac{1}{m}}{2}$		
	$x = \frac{m}{2}$		
	$x = \frac{m^2 - 1}{m} \times \frac{1}{2}$		1
	m 4		
	$x = \frac{m^2 - 1}{2m}$		
	$2m = m^2 - 1$		
	$m^2 - 2xm - 1 = 0$		1
	using quadratic formula		
	$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$m = \frac{2x \pm \sqrt{(4x^2 - 4 \times 1 \times -1)}}{2}$		
	$\frac{2}{\sqrt{1+2+4}}$		
	$=\frac{2x\pm\sqrt{4x^2+4}}{2}$		
	$=\frac{2x\pm\sqrt{4(x^2+1)}}{2}$		
	$=\frac{2\left[x\pm\sqrt{(x^2+1)}\right]}{2}$		
	= - 2		1
	$= x \pm \sqrt{(x^2 + 1)}$		
	but $m = e^{y}$		
	$e^{y} = x \pm \sqrt{(x^2 + 1)}$		
	$e^{y} > 0$		
	$\therefore e^{y} = x + \sqrt{(x^2 + 1)}$		
	$\ln e^y = \ln(x + \sqrt{(x^2 + 1)})$		
	$y = \ln(x + \sqrt{(x^2 + 1)})$		1

	uestion 9 Trial HSC Examination - Mathematics				
Part	Solution		Marks	Comment	
b)	i)		2		
	a = -2	$x = -3 v = 4ms^{-1}$			
	a = -2				
	$v = \int -2a$	dt			
	=-2t+a	c			
	when t =	= 0 v = 4			
	4 = -2×	0+c			
	c=4			1	
	$\therefore v = -2$				
	$x = \int -2$	t+4dt			
	$=-t^2+t^2$	4t+c			
	when t	=0 x=-3			
	-3 = 0 +	0 = c			
	c = -3				
	$\therefore x = -t$	$t^{2} + 4t - 3$		1	
	ii)				
		at rest when $v=0$	2	1	
	v = -2t				
	0 = -2t	+4			
	2t = 4	_		1	
	$t = 2 \sec \alpha$				
	: parti	cle at rest when $t = 2 \sec onds$			
	iii)				
		at the origin when $x = 0$	2		
	$x = -t^2$				
	$0 = -t^2$			1	
	,	(4+3)		1	
	,	(t-1)	E		
		or 3 sec onds		1	
	particle	first at the origin when $t = 1 \sec ond$			

Ques	tion 9	Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
b)	iv)	x 2 1 1 1 2 3 4 5 > t	2	1 for correct shape 1 for correct intercepts
			/12	

.

Questic Part	Solution	Marks	
	*	MINIKS	Comment
1 "/ 1	i)	1	
	$Q(t) = 2000(25 - t)^2, t \ge 0$		
	Q'(t) = -4000(25 - t)		
	∴ it is emptying at a rate of		
	4000(25-t) litres/minute		1
	ii)	2	
l :	Pool full at $t = 0$	_	
1 1	$Q(t) = 2000(25 - 0)^2$		
1	= 1250000litres		1
	$\therefore \text{ half full} = 625000 \text{ litres}$		1
	$625000 = 2000(25 - t)^2$		
1	$312.5 = 625 - 50t + t^2$		
1	$t^2 - 50t + 312.5 = 0$		
	$2t^2 - 100t + 625 = 0$		
	$t = \frac{100 \pm \sqrt{100^2 - 4 \times 2 \times 625}}{2}$		
	2×2		
	$t = \frac{100 \pm \sqrt{5000}}{4}$		
	$t = \frac{100 \pm 50\sqrt{2}}{4}$		
	4 _		
	$t = \frac{2(50 \pm 25\sqrt{2})}{4}$ $t = \frac{50 \pm 25\sqrt{2}}{2}$		
	50+25 /2		
	$t = \frac{30 \pm 23\sqrt{2}}{2}$		
1 1	t = 7.322 or 42.68		
	∴ $t = 7$ minutes	:	1
	\therefore it will take \approx 7 minutes to half empty the pool		
	iii)		
	$20kL = 20000L/\min$	2	
	20000 = -4000(25 - t)		1
	20000 = -100000 + 4000t		
	4000t = 120000		
	$t = 30 \min s$		
	∴ the flow rate will be 20kL after 30 minutes		1

Ques	tion 10 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	iv) when $t = 10$ $Q(t) = 2000(25-10)^2$ $= 2000 \times 225$	2	1
	= $450000L$ left in the pool when $t = 0$ Q(t) = 1250000L $Average = \frac{(1250000 - 450000)}{10}$		1
	= 80000L/min		
b)	i) B $\sqrt{x^2 + 9}$ $\sqrt{6 \text{ km}}$ ii)	1	1
	Using Pythagoras and $S = \frac{D}{T}$ \therefore he paddles a distance of $\sqrt{x^2 + 9}$ at 4km/h \therefore Paddles - $\frac{\sqrt{x^2 + 9}}{4}$ hours \therefore he walks a distance of $6 - x$ at 5km/h \therefore Walks - $\frac{6 - x}{5}$ hours The total time $T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$	2	1

Quest	ion 10 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
b)	iii)		
	$T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$	2	
	$T'(x) = \frac{x}{4\sqrt{x^2 + 9}} - \frac{1}{5}$		1
	$=\frac{5x-4\sqrt{x^2+9}}{20\sqrt{x^2+9}}$		
	Min when $T'(x) = 0$		
	$0 = \frac{5x - 4\sqrt{x^2 + 9}}{20\sqrt{x^2 + 9}}$		
	20 V		
	$0 = 5x - 4\sqrt{x^2 + 9}$		
	$5x = 4\sqrt{x^2 + 9}$ (square both sides)		
	$25x^2 = 16x^2 + 144$		
	$9x^2 = 144$		
	$x^2 = 16$		
	$x = \pm 4 \ (x \neq -4)$		
	$\therefore x = 4$		
	check minimum		
	when $x < 4, T'(x) < 0$		
	when $x > 4, T'(x) > 0$		
	$\therefore \min imum \text{ at } x = 4$		
	:. Adam paddles to C - 4 kilometres from O		
	$T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$		
	$T(4) = \frac{\sqrt{4^2 + 9}}{4} + \frac{6 - 4}{5}$		
	=1.65hours	-	1
	=1hour & 39 min s	1	1
		/12	