NEWINGTON COLLEGE

Trial Examination

12 MATHEMATICS

2003

Extension 1

Time allowed: 2 hours (plus five minutes reading time)

DIRECTIONS TO CANDIDATES

- All questions may be attempted.
- In every question, show all necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Approved silent calculators may be used.
- A table of standard integrals is provided for your convenience.
- The answers to the questions in this paper are to be returned in separate bundles clearly marked Question 1, Question 2, etc.
- Each bundle must show the candidate's computer number.
- The questions are not necessarily arranged in order of difficulty. Candidates are advised to read the whole paper carefully at the start of the examination.
- Unless otherwise stated, candidates should leave their answers in simplest exact form.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_x x$, x > 0

Question 112 marksmarksa) Differentiate $\tan^{-1} \frac{x}{3}$.2b) Evaluate:6

- (i) $\int_{1}^{\sqrt{2}} \frac{x}{\sqrt{4-x^2}} dx$ using the substitution $u = 4 x^2$.
- (ii) $\int_{0}^{1} \sqrt{1-x^{2}} dx \text{ using the substitution } x = \sin \theta.$
- c) Solve the equation $3\sin\theta + 4\cos\theta = 2.5$ for values of θ between 0° and 360° . 4 Give your answer correct to the nearest minute.

Question 2 12 marks Start a New Booklet

a) (i) Show that
$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{dv}{dt}$$
.

- (ii) The acceleration of a particle moving in a straight line is given by $\ddot{x} = -2e^{-x}$ where x metres is the displacement from the origin. Initially, the particle is at the origin with velocity 2 ms^{-1} .

 Prove that $v = 2e^{\frac{-x}{2}}$.
- (iii) What happens to v as x increases without bound?
- b) (i) By considering the graph of $y = e^x$, show that the equation $e^x + x + 1 = 0$ has only one real root and that this root is negative.
 - (ii) Taking $x = -I \cdot 5$ as a first approximation to this root, use one application of Newton's method to find a better approximation.
- c) In how many ways can the letters of the word GEOMETRY be arranged in a straight line if the vowels must occupy the 2nd, 4th and 6th places.

 (NOTE: The vowels in the English alphabet are the letters A, E, I, O, U).

Q3 ... Page 2

. Page 2

Question 3 12 marks Start a New Booklet

Trial HSC Examination 2003

<u>marks</u>

- a) Find the general solution for $\sqrt{3} \sin 2\theta = \cos 2\theta$.
- b) The region bounded by the curve $y = \sin x$, the x-axis and the lines $x = \frac{\pi}{12}$ and $x = \frac{\pi}{4}$ is rotated through one complete revolution about the x-axis. Find the volume of the solid so formed.
- c) Two points $P(2p, p^2)$ and $Q(2q, q^2)$ lie on the parabola $x^2 = 4y$.
 - Show that the equation of the tangent to the parabola at P is $y = px p^2$.
 - ii) The tangent at P and the line through Q parallel to the y axis intersect at T. Find the coordinates of T.
 - (iii) Write down the coordinates of M, the midpoint of PT.
 - (iv) Determine the locus of M when pq = -1.

Question 4 12 marks Start a New Booklet

- a) If $\tan A$ and $\tan B$ are the roots of the equation $3x^2 5x I = 0$, find the value $3 \cot(A + B)$.
- b) A particle is moving with simple harmonic motion. When it is at a distance d=5 from the centre of motion, its speed is V. If its speed is $\frac{V}{2}$ when the distance from the centre is 2d, show that the period of the motion is $\frac{4\pi d}{V}$ and the amplitude is $d\sqrt{5}$.
- c) The rate at which a body cools in air is assumed to be proportional to the difference between its temperature T and the constant temperature S of the surrounding air. This can be expressed by the differential equation
 - $\frac{dT}{dt} = k(T-S)$ where t is the time in hours and k is a constant.
 - (i) Show that $T = S + Be^{lt}$, where B is a constant, is a solution of the differential equation.
 - (ii) A heated body cools from 80 °C to 40 °C in 2 hours. The air temperature S around the body is 20 °C. Find the temperature of the body after one further hour has elapsed. Give your answer correct to the nearest degree.

Q5 ... Page 3

Page 3

Question 5 12 marks Start a New Booklet

marks

a) Nine points lie inside a circle. No three of the points are collinear. Five of the points lie in sector 1, three lie in sector 2, and the other point lies in sector 3.

- (i) Show that 84 triangles can be made using these points as vertices.
- (ii) One triangle is chosen at random from all the possible triangles. Find the probability that the vertices of the triangle chosen lie one in each sector.
- (iii) Find the probability that the vertices of the triangle chosen lie all in the same sector.
- b) Find the roots of the equation $x^3 12x^2 + 12x + 80 = 0$ given that they are three consecutive terms in an Arithmetic Series.
- c) Consider the binomial expansion $1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n = (1+x)^n$.
 - (i) Show that $1 \binom{n}{1} + \binom{n}{2} \dots + (-1)^n \binom{n}{n} = 0$.
 - (ii) Show that $1 \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} \dots + (-1)^n \frac{1}{n+1} \binom{n}{n} = \frac{1}{n+1}$.

Question 6 12 marks Start a New Booklet

- a) Colour-blindness affects 5% of all men. What is the probability that any random 5 sample of 20 men should contain:
 - (i) no colour-blind men.
 - (ii) only one colour-blind man.
 - (iii) two or more colour-blind men.

Q6 cont. ... Page 4

Page 4

marks

7

b) When $(3 + 2x)^n$ is expanded in increasing powers of x, it is found that the coefficients of x^5 and x^6 have the same value. Find the value of n and show that the two coefficients mentioned are greater than all other coefficients in the expansion.

Ouestion 7 12 marks Start a New Booklet

Trial HSC Examination 2003

a) Prove by induction that
$$2^3 + 4^3 + 6^3 + ... + (2n)^3 = 2n^2(n+1)^2$$
.

A particle is projected with velocity $V \, \mathrm{ms}^{-1}$ from a point O at an angle of elevation α . Axes Ox and Oy are taken horizontally and vertically through O. The particle just clears two vertical chimneys of height h meters at horizontal distances of p metres and q metres from O. The acceleration due to gravity is taken as $10 \, \mathrm{ms}^{-2}$ and air resistance if ignored.

- (i) Write down expressions for the horizontal displacement x and the vertical displacement y of the particle after time t seconds.
- (ii) Show that $V^2 = \frac{5p^2(1 + \tan^2 \alpha)}{p \tan \alpha h}$
- (iii) Show that $\tan \alpha = \frac{h(p+q)}{pq}$.

END OF PAPER

x=1, 0==

 $\infty = 1, \ \omega = 3$

26=52, U=2

$$1/(a) \quad \frac{1}{3} = \frac{3}{x^2+9}$$

$$(t)(i)$$
 $\int_{1}^{\sqrt{2}} dx$

$$U = 4 - x^{2}$$

$$dx = -2x$$

$$dx = -\frac{4x}{2}$$

$$= -\int_{3}^{2} \frac{du}{2\sqrt{u}}$$

$$= -\int_{3}^{2} \frac{du}{2\sqrt{u}}$$

$$= \int_{3}^{2} \frac{du}{2\sqrt{u}}$$

$$= \int_{3}^{2} -\sqrt{2} du$$

$$= \sqrt{3} - \sqrt{2}$$

$$\begin{cases}
\overline{1i} \\
\overline{1} \\
\overline{1$$

c)
$$5\left(\frac{3}{2}\sin\theta + \frac{t}{5}\cos\theta\right) = 2.5$$

$$Sin(\theta+d)=\frac{1}{2}$$
 , $d=sin^{-1}\frac{4}{5}$

$$\Theta + \lambda = 30^{\circ}, 150^{\circ}, 390^{\circ}$$

$$\Theta = 30^{\circ} - \lambda, 150^{\circ} - \lambda, 390^{\circ} - \lambda$$

$$= -23^{\circ}8', 96^{\circ}52', 336^{\circ}52'$$

$$= 96^{\circ}52', 336^{\circ}52' \quad (nearest minute)$$

$$\frac{2}{\sqrt{2}}$$

$$(a) (i) \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$= \sqrt{\frac{dv}{dx}}$$

$$= \frac{d}{dx} \left(\frac{1}{2}v^{2}\right) \cdot \frac{dv}{dx}$$

$$= \frac{d}{dx} \left(\frac{1}{2}v^{2}\right)$$

(ii)
$$\ddot{x} = -2e^{-x}$$

 $d(x^2) = -2e^{-x}$
 $d(x^2) = -2e^{-x}$

v=2e-==

$$\frac{1}{2}v^{2} = 2e^{-x}$$

$$v^{2} = 4e^{-x}$$

$$v = \pm 2e^{-\frac{x}{2}}$$
Initially $v > 0$ and $v^{2} \neq 0$:- reject -ve v

$$y = e^{x}$$

$$y = -x - y$$

$$f(x) = e^{x} + x + 1$$

$$f'(x) = e^{x} + 1$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$= -1.5 - \frac{e^{-1.5} + 1}{e^{-1.5} + 1}$$

$$= -1.27 \quad (correct to 2 dec. pl)$$

No. of arrangements =
$$\frac{3!}{2!}$$
 = $\frac{5!}{5!}$

$$\frac{1}{2} + \tan 2\theta = \frac{1}{\sqrt{3}}$$

$$V = \pi \int_{-1}^{\pi} \int_{$$

(c) (i)
$$\frac{dy}{dx} = \frac{x}{2y}$$
 at $P(2p, p^2)$

equired equation:
$$y - p^2 = p(x - 2p)$$

= $px - 2p^2$

$$(c) \qquad (r+q), rq$$

$$(ir)' y = -1$$

$$\frac{1}{1 - \frac{1}{3}}$$

$$\frac{1}{1 - \frac{1}{3}}$$

$$\frac{1}{2}v^{2} = -h^{2}x^{2} + C$$

$$V = V, \quad x = d$$

$$\therefore C = \frac{1}{2}V^2 + \frac{n^2d^2}{2}$$

$$\frac{1}{2}v^{2} = -n^{2}x^{2} + \frac{1}{2}v^{2} + \frac{n^{2}d^{2}}{2}$$

$$\sqrt{2} = \sqrt{2} + n^2 \left(d^2 - x^2\right)$$

$$V = \frac{V}{2} \approx 2d$$

$$\left(\frac{\checkmark}{2}\right)^2 = \checkmark + n^2 \left(d^2 - 4d^2\right)$$

$$n^2 = \left(\sqrt[4]{2} - \frac{\sqrt{3}}{4}^2\right) - 3d^2$$

$$= \frac{3}{4} \times \frac{1}{3} \times \frac{1}{3}$$

$$feriod = \frac{2\pi}{n}$$

$$= \frac{2\pi}{\sqrt{2}} \cdot \frac{2d}{\sqrt{2}}$$

$$= 4\pi d$$

When
$$v=0$$
, $\sqrt{\frac{2}{7}} + n^2(d^2x^2) = 0$
 $\sqrt{\frac{2}{7}} + \frac{\sqrt{2}}{4d^2} (d^2x^2) = 0$
 $\sqrt{\frac{2}{7}} + \frac{\sqrt{2}}{4d^2} (d^2x^2) = 0$
 $\sqrt{\frac{2}{7}} + \frac{\sqrt{2}}{4d^2} = \sqrt{\frac{2}{7}} + \frac{\sqrt{2}}{\sqrt{2}}$

(6)

$$x^{2} = 5d^{2}$$

$$\Rightarrow a - plitude = \sqrt{5}d^{2}$$

$$= d\sqrt{5}$$

(ii)
$$t=0$$
, $T=80^{\circ}$
 $80^{\circ}=20^{\circ}+8e^{\circ}$
 $8=60$
 $T=20+60e^{\frac{1}{2}}$
 $40=20+60e^{\frac{1}{2}}$
 $e^{\frac{1}{3}}$
 $2k=l_{1}(\frac{1}{3})$
 $k=\frac{1}{2}l_{1}(\frac{1}{3})$

$$t = 3, T = 20 + 60 e \frac{\frac{1}{5} \ln(\frac{1}{3})}{-3},$$

$$= 20 + 60 \ln(\frac{1}{5})^{\frac{1}{2}}$$

$$\frac{t_{r+1}}{t_r} = \frac{c_r 3}{c_r 3} \frac{it-r}{(2x)^r}$$

where tr=rth term in the expansion

$$= \frac{14!}{(14-r)! \, r!} \cdot \frac{(15-r)! \, (r-1)!}{14!} \cdot \frac{2 \times 7}{3}$$

Let cr = coefficient of the rth term

$$\frac{C_{r+1}}{C_{r}} = \frac{15-r}{r} \cdot \frac{2}{3}$$

= 30-2- $\frac{C_{r+1}}{C_{r-1}} = 1 \quad \text{when } r = 6 \quad \therefore \quad C_6 = C_7$

 $\frac{C_{r+1}}{C_{-}} < 1$ when r > 6 ... $C_7 > C_8 > C_9 > C_{10} > C_{12} > C_{12} > C_{12} > C_{13} > C_{14} > C_{15} > C_{15$

C6 + C7 are greatest coefficients

$$\sqrt[n]{(a)} \frac{S+ep1}{L+S} = (2xi)^{3}$$

$$= 8 \qquad \therefore +rve \text{ for } n=1$$

$$\text{RHS} = 2xi^{2}(i+i)^{2}$$

$$= 8$$

Step 2 Assume result true for n=k, k is a positive integer 12. 23+43-63-...+ (2k)3=2k2(k+1)2 Step3 Prove result true for n=k+1

-3 ,3 ,3 . . . 17413 /7/2 N3-7/62) 3/1/2/1

. 7(a) cont.

LHS =
$$2k^{2}(k+1)^{2} + (2(k+1))^{3}$$
 from assumption
= $2(k+1)^{2}(k^{2} + 4(k+1))$
: , = $2(k+1)^{2}(k+2)^{2}$
= RHS

Stept Result is true for n=1. Hence it is true for n=1+1=2, n=2+1 etc. : The result is true for all positive integers

(b) (i)
$$x = v + \cos x$$

 $y = v + \sin x - \frac{1}{2}g + \frac{2}{3}$

$$f = V + \frac{1}{\sqrt{\cos x}}$$

$$f = V + \frac{1}{\sqrt{\cos x}}$$

$$h = V + \frac{1}{\sqrt{\cos x}} + \frac{1}{2}g \frac{\rho^2}{\sqrt{\frac{2}{\cos^2 x}}}$$

$$= p + and - \frac{5p^2}{v^2 \cos^2 d}$$

$$= p + and - \frac{5p^2}{v^2} (+an^2d + 1)$$

$$5p^{2}(\tan^{2}d+1) = V^{2}(p\tan d-h)$$

$$V^{2} = \frac{5p^{2}(\tan^{2}d+1)}{p\tan d-h}$$

$$\frac{(iii)}{q \tan d - h}$$

$$\frac{-1-5p^2(+an^2x+1)}{p+anx-h} = \frac{5q^2(+an^2x+1)}{q+anx-h}$$

$$p^{2}(q + and - h) = q^{2}(p + and - h)$$

 $+and(p^{2}q - q^{2}p) = p^{2}h - q^{2}h$

tand = h(Pq)(P+q) = h(P+q)