

y cm

Mini Test 25: Algebra—Patreins II systessions and Number Plane

Which expression is equivalent to 3(1-p)-p?

A 3 - 2p **B** $3 - p^2$ **C** 3 - 4p **D** 3 + 2p

Ben used the rule 'multiply by 3 and then add 2' to get the next number in a pattern. The first three numbers are 1, 5 and 17. What is the seventh number

in the pattern?

 \mathbf{R} is the point (5, -2). QR is parallel to the x-axis. PQ is parallel to the y-axis. PQ = 6 and QR = 8.

What are the co-ordinates of P?

- **A** (-1,8) **B** (-3,4) **C** (-1,4) **D** (-3,8)3(5x + 4) + 2(3x - 7) =
- **A** 21x 2B 14x - 2C 21x - 3**D** 14x - 3

This pattern is used in questions 5 to 8. Daniel made this pattern of squares with matches. He then drew up a table:

Shape 1 Shape 2 Shape 3

Shape 4

Shape 5

R(5, -2)

_		_			
Shape	1	2	3	4	5
Number of squares	1	5	13	25	41
Number of matches	4	16	36	64	100

- **5** How many squares will there be in Shape 7?
- How many matches will Daniel need for Shape 7?
- **7** Which rule gives the number of matches needed for each shape?

A $4 \times$ shape number

- B $3 \times \text{number of squares} + 1$
- C $2 \times \text{number of squares} + 2$
- \mathbf{D} (2 × shape number)²

8 What is the largest number shape that can be made with 500 matches?

 \mathbf{A} 9 **B** 10 **C** 11

C xy - 15 $\mathbf{D} xy - 8$

Which rule connects x and y? 10

x	1	2	3	4	5
y	1	13,	33	61	97

A $y = x^2 + 1$ **C** $y = 3x^2 - 2$ **B** $y = 2x^2 - 1$ $D v = 4x^2 - 3$

11 Which point will the line y = 7 - 2xpass through?

 \mathbf{B} \mathbf{B} $\mathbf{A} \mathbf{A}$ \mathbf{C}

12 What is the 27th number in this pattern?

1, 4, 7, 10, 13, ...

- 3(2x-1)+5+ = 10x+2What is the missing term?
- Which of these points lies on the straight line joining (1,3) to (7,15)? **A** (2,4) **B** (3,8) **C** (4,10) **D** (5,11)

Which expression is equivalent to

$$4 + x - x^{2}$$
?
 $A - x^{2} + x + 4$ $B - x^{2} - x + 4$.
 $C x^{2} - x - 4$ $D x^{2} + x - 4$

16 What is the next number in this pattern?

Mini Test 25: Algebra—Patterns,

Expressions and Number Plane.....

Page 28

1 C 21457 3 B 4 A 5 85 6 196 7 D 8 C 9 C 10 D 11 B 1279 13 4x 14 D 15 A 16 $\frac{11}{12}$

1
$$3(1-p) - p = 3 - 3p - p$$

= $3 - 4p$

2 The third number = 17

The fourth number =
$$3 \times 17 + 2$$

= $51 + 2$
= 53

The fifth number =
$$3 \times 53 + 2$$

= $159 + 2$
= 161

The sixth number =
$$3 \times 161 + 2$$

= $483 + 2$
= 485

The seventh number =
$$3 \times 485 + 2$$

= 1457

3 QR = 8 so Q is 8 units from R. The co-ordinates of Q are (-3, -2).

$$PQ = 6$$
 so P is 6 units above Q.

The co-ordinates of P are (-3, 4).

$$3(5x + 4) + 2(3x - 7) = 15x + 12 + 6x - 14$$
$$= 21x - 2$$

Shape 1 Shape 2 Shape 3

Shape 4

Shape 5

Shape	1	2	3	4	5
Number of squares	1	5	13	25	41
Number of matches	4	16	36	64	100

The number of squares increases by 4, then 8, then 12 and then 16.

The difference between the squares increases by 4 each time.

The next difference will be 20.

Shape 6 will have 41 + 20 or 61 squares.

The next difference will be 24.

Shape 7 will have 61 + 24 or 85 squares.

6 The number of matches increases by 12, then 20, then 28 and then 36.

The difference between the number of matches increases by 8 each time.

The next difference will be 44.

Shape 6 will need 100 + 44 or 144 matches.

The next difference will be 52.

Shape 7 will need 144 + 52 or 196 matches.

7 Try each option:

'4 × shape number'

There would be 4 matches for Shape 1.

There would be 8 matches for Shape 2.

This is not the rule.

 $3 \times \text{number of squares} + 1$

When there is 1 square there would be 4 matches.

When there are 5 squares there would be 16 matches.

When there are 13 squares there would be 40 matches.

This is not the rule.

 $2 \times \text{number of squares} + 2$

When there is 1 square there would be 4 matches.

When there are 5 squares there would be 12 matches.

This is not the rule.

$(2 \times \text{shape number})^2$

There would be $(2 \times 1)^2$ or 4 matches for Shape 1.

There would be $(2 \times 2)^2$ or 16 matches for Shape 2.

There would be $(2 \times 3)^2$ or 36 matches for Shape 3.

There would be $(2 \times 4)^2$ or 64 matches for Shape 4.

There would be $(2 \times 5)^2$ or 100 matches for Shape 5.

This is the rule.

The rule is $(2 \times \text{shape number})^2$.

8 [Use the rule found in the previous question and try each option.]

There would be $(2 \times 9)^2$ or 324 matches needed for Shape 9.

There would be $(2 \times 10)^2$ or 400 matches needed for Shape 10.

There would be $(2 \times 11)^2$ or 484 matches needed for Shape 11.

There would be $(2 \times 12)^2$ or 576 matches needed for Shape 12.

The largest number shape that can be made with 500 matches is Shape 11.

9 [The shaded area is the area of a large rectangle minus the area of a small rectangle.]

Area of large rectangle = length \times width = $x \times y$ = xy

Area of smaller rectangle = length \times width = 5×3 = 15

Shaded area = (xy - 15) cm²

10	x	1	2	3	4	
	y	1	13	33	61	

Try each option:

$$y = x^2 + 1$$

When
$$x = 1$$
,

$$y = 1^2 + 1$$

$$= 2$$

This is not the option.

$$y = 2x^2 - 1$$

When x = 1,

$$y=2\times 1^2-1$$

$$= 1$$

When x = 2,

$$y=2\times 2^2-1$$

= '

This is not the option.

$$y = 3x^2 - 2$$

When
$$x = 1$$
,

$$y=3\times 1^2-2$$

= 1

When x = 2,

$$y=3\times 2^2-2$$

= 10

This is not the option.

$$y = 4x^2 - 3$$

When
$$x = 1$$
,

$$y=4\times 1^2-3$$

= 1

When x = 2,

$$y = 4 \times 2^2 - 3$$

= 13

When x = 3,

$$y = 4 \times 3^2 - 3$$

$$= 33$$

When x = 4,

$$y = 4 \times 4^2 - 3$$

$$= 61$$

When x = 5,

$$y = 4 \times 5^2 - 3$$

$$= 97$$

This is the option.

The rule is $y = 4x^2 - 3$.

11 [If a line passes through a point the co-ordinates of that point must satisfy the equation of the line.]

The equation of the line is y = 7 - 2x.

At A,
$$x = 3$$

When
$$x = 3$$
,

$$y = 7 - 2 \times 3$$
$$= 7 - 6$$

$$= 1 \pmod{4}$$

A does not lie on the line.

At B,
$$x = 4$$

When
$$x = 4$$
,

$$y = 7 - 2 \times 4$$

$$= 7 - 8$$

$$= -1$$

B does lie on the line.

The point that lies on the line is B (4, -1).

12 1, 4, 7, 10, 13, ...

The numbers increase by 3 each time.

The first number is $3 \times 1 - 2$.

The second number is $3 \times 2 - 2$.

The third number is $3 \times 3 - 2$.

So, following this pattern,

the 27th number =
$$3 \times 27 - 2$$

= $81 - 2$

$$= 79$$

13
$$3(2x-1)+5+\boxed{?}=10x+2$$

Now
$$3(2x-1) + 5 = 6x - 3 + 5$$

So the missing term is what must be added to 6x + 2 to give 10x + 2.

The missing term is 4x.

14 The line passes through (1, 3) and (7, 15).

The y-value in both points is 1 more than twice the x-value.

So that must be the equation of the line:

$$y=2x+1.$$

options, the only point with its y-value one more than twice its x-value is (5, 11).

Considering the

15 $4 + x - x^2 = -x^2 + x + 4$ [4 and x need to be added but x^2 needs to be subtracted.]

16
$$\frac{1}{2}$$
, $\frac{7}{12}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$,...

All the fractions have a common denominator of 12.

[Write the pattern using fractions whose denominator is 12.]

$$\frac{6}{12}$$
, $\frac{7}{12}$, $\frac{8}{12}$, $\frac{9}{12}$, $\frac{10}{12}$, ...

The next number in the pattern will be $\frac{11}{12}$.