

Year 12 Mathematics HSC Assessment Task 1 2010/2011

General Instructions

- Reading time 5 minutes
- Working time 1 hour
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - 36

- Attempt Questions 1 − 3
- All questions are of equal value
- Start each question in a new writing answer booklet
- Write your name on each answer booklet
- If you do not attempt a question, submit a blank answer booklet marked with your name, question number and "N/A" on the page

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total Marks - 36

Attempt Questions 1–3 All questions are of equal value

Answer each question on a SEPARATE answer booklet. Extra answer booklets are available.

QUESTION 1 (12 marks)				
(a)		rst and second derivatives of the following: $y = \frac{4}{3}x^3$		2
	ii)	$f(x) = \frac{1}{x+1}$		2
	iii)	$f(x) = (x^2 + 1)^4$		3

(b) Given the graph of the function f(x) below

Find the values of x for which

·i)	f(x) is increasing	2
ii)	f(x) is concave up	1
iii)	f(x) is both concave up and increasing	1
iv)	f'(x) = 0	1

End of Question 1

QUESTION 2 (12 marks) START A NEW ANSWER BOOKLET (a) A function f(x) is defined by $f(x) = 6x^2 - 2x^3$. i) Find the coordinates of the turning points of y = f(x) and determine their nature. ii) Find the coordinates of any point(s) of inflexion. 1 iii) Hence sketch the graph of y = f(x). Label the turning points, any point(s) of inflexion and the points where the curve meets the x-axis. (Your graph should be one third of the page) (b) A box, open at the top is to be made from cardboard. The base of the box is a square of side of x cm and its height is y cm as shown in the diagram. i) If the volume of the box is to be $32 \ cm^2$, show that $y = \frac{32}{x^2}$.

ii) Show that the area of cardboard needed will be $A = x^2 + \frac{128}{x}$

iii) Find the dimensions of the box which minimises the area

End of Question 2

3

QUESTION 3 (12 marks) Mar				
(a)		a has focus at (0,3) and directrix at $y=1$. Draw a sketch of the labelling the focus, directrix and vertex.	2	
(b)		a has focus at (2,0) and directrix at $x=-1$. Draw a sketch of the labelling the focus, directrix and vertex.	2	
(c)	P(8,16) is	a point on the parabola $x^2 = 4y$ and F is the focus.		
		$x^2 = 4y$		
	i)	Show that the tangent at P has equation $4x - y - 16 = 0$. 2	
	ii)	The tangent at P meets the x axis at T. Find the coordinates of T and hence show that \angle PTF=90°	2	
(c)		he points (-1,0) and (5,2) respectively. Show that the equation of the he point $P(x,y)$ which moves so that		
	i)	P is equidistant from the points A and B is $3x + y = 7$.	2	
	ii)	PA is perpendicular to PB, is $x^2 + y^2 - 4x - 2y - 5 = 0$	2	

End of Assessment Task

