

MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 3 (Trial Examination)

June 27, 2012

General instructions

- Working time 2 hours.
 (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

 Mark your answers on the answer sheet provided (numbered as page 9)

SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: # BOOKLETS USED:

Class (please ✓)

○ 12M4A - Mr Weiss

O 12M3C - Ms Ziaziaris

 $\bigcirc\ 12M4B$ – Mr Ireland

○ 12M3D - Mr Lowe

O 12M4C - Mr Fletcher

○ 12M3E - Mr Lam

Marker's use only.

Trial Ref 8 dise Office.							
QUESTION	1-10	11	12	, 13	14	Total	%
MARKS	10	$\overline{15}$	15	15	15	70	

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

7. It is known that $\log_e x + \sin x = 0$ has a root close to x = 0.5. Using one application of Newton's method, which of the following gives a better approximation to 2

1

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

Marks

1. Which is the correct value of $\lim_{x\to 0} \frac{3x}{\sin 2x}$?

- (A) 0
- (B) $\frac{2}{3}$
- (C) $\frac{3}{2}$
- (D) 3
- 2. Which of the following is the acute angle (correct to the nearest degree) between the two lines 2x - y + 1 = 0 and 3x + y - 4 = 0?
 - (A) 11°
- (B) 45°
- (C) 79°
- (D) 135°
- 3. Which of the following expressions will result in the coordinates of the point P 1 which divides the interval AB externally in the ratio 3:2, given A is (-5,2) and B is (4,5)?
 - (A) $\left(\frac{(2)(-5) + (-3)(4)}{-3 + 2}, \frac{(2)(2) + (-3)(5)}{-3 + 2}\right)$
 - (B) $\left(\frac{(-3)(-5)+(2)(4)}{-3+2}, \frac{(-3)(2)+(2)(5)}{-3+2}\right)$
 - (C) $\left(\frac{(-2)(-5) + (-3)(4)}{-3 + 2}, \frac{(-2)(2) + (-3)(5)}{-3 + 2}\right)$
 - (D) $\left(\frac{(2)(2)+(-3)(5)}{-3+2}, \frac{(2)(-5)+(-3)(4)}{-3+2}\right)$
- 4. Which of the following is the derivative of xe^{2x} ?

 - (A) $e^{2x}(1+x)$ (B) $e^{2x}(1+2x)$ (C) $2x^2e^{2x}$

- 5. Which of the following represents the complete solutions for $-180^{\circ} < \theta \le 180^{\circ}$ to the equation

- (A) 60°, 120°
- (B) 120°, 240°
- (C) $\pm 60^{\circ}$, $\pm 120^{\circ}$ (D) $\pm 120^{\circ}$
- 6. What should $\int \cos^2 \frac{1}{2} x \, dx$ be transformed into, in order to find its primitive?
 - (A) $\int \frac{1}{2} \frac{\cos x}{2} dx$ (C) $\int \frac{1}{2} \frac{\cos 2x}{2} dx$
 - (B) $\int \frac{1}{2} + \frac{\cos 2x}{2} \, dx$
- (D) $\int \frac{1}{2} + \frac{\cos x}{2} dx$

(A) 0.43

decimal places?

- (B) 0.73
- (C) 0.57
- (D) 0.27
- 8. Which of the following graphs represents $y = \cos^{-1} 2x$?

- 9. If $\sqrt{3}\cos x \sin x \equiv R\cos(x+\alpha)$, which of the following gives the correct value of α ?
 - (A) $\frac{\pi}{6}$
- (B) $\frac{5\pi}{6}$ (C) $\frac{7\pi}{6}$
- 10. Zac and Mitchell play a series of games. The series ends when one player has won two games. In any game the probability that Zac wins is $\frac{3}{5}$ and the probability that Mitchell wins is $\frac{2}{5}$.

What is the probability that three games are played?

- (A) $\frac{6}{25}$ (B) $\frac{19}{25}$ (C) $\frac{12}{25}$ (D) $\frac{18}{25}$

End of Section I. Examination continues overleaf. 1

Section II: Short answer

Question 11 (15 Marks) Commence a NEW page. Marks

- (a) Solve for x: $\frac{1}{x} > x$
- (b) Evaluate $\int_0^2 \frac{dx}{\sqrt{16-x^2}}.$
- (c) Find the exact value of $\sin\left(2\tan^{-1}\frac{3}{7}\right)$, showing full working.
- (d) Solve $\sin 2\theta = \sin \theta$, $0 \le \theta \le 2\pi$.
- (e) Using the substitution $u = \tan x$, find the exact value of

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

Question 12 (15 Marks)

Commence a NEW page.

Marks

- (a) If $P(x) = x^3 6x^2 + ax 4$, a > 0,
 - i. Given all the roots of P(x) = 0 are real and positive, and that one of the roots is the product of the other two roots, show that a = 10.
 - ii. Show that x 2 is a factor of $P(x) = x^3 6x^2 + 10x 4$.
- (b) Air is being pumped into a spherical balloon at a rate of 20 cm³s⁻¹. Find the rate of increase of the surface area of the balloon when the radius is 5 cm.
- (c) A particle moves along the x axis such that its velocity $v \text{ ms}^{-1}$ is given by

$$v^2 = -4x^2 + 8x + 32$$

- By expressing the acceleration as a function in terms of x, prove that the particle is undergoing simple harmonic motion.
- ii. Find the amplitude.
- iii. Find the maximum acceleration.

JUNE 27, 2012 NORTH SYDNEY BOYS' HIGH SCHOOL

Question 13 (15 Marks)

Commence a NEW page.

Marks

- (a) Prove by mathematical induction that $5^n + 2 \times 11^n$ is divisible by 3, where n is a positive integer.
- (b) Show that the shaded area is $A = \frac{1}{2} \ln 2$ units².

(c) Two circles intersect at A and B. CAE is a straight line where C is a point on the first circle and E is a point on the second circle. The tangents to the circles at C and E meet at D.

Copy the diagram into your writing booklet.

Prove that BCDE is a cyclic quadrilateral, without adding any construction lines.

(d) The acceleration of a raindrop which at time t seconds is falling with speed v metres per second is given by the equation

$$\frac{dv}{dt} = -\frac{1}{3} \left(v - 3g \right)$$

where q is a constant.

- i. Show that $v=3g+Ae^{-\frac{1}{3}t}$, where A is a constant, satisfies the above equation.
- ii. Given that the initial velocity has a value of g, find the value of A.
- iii. After how many seconds is the raindrop falling with a speed of 2g metres per second? Give your answer correct to 1 decimal place.
- iv. What value does v approach as $t \to \infty$?

1

NORTH SYDNEY BOYS' HIGH SCHOOL

JUNE 27, 2012

Question 14 (15 Marks)

Commence a NEW page.

Marks

2

(a) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two points on the parabola $x^2=4ay$. The tangent at P and the line through Q parallel to the axis of the parabola meet at the point R.

The tangent at Q and the line through P parallel to the axis of the parabola meet at the point S.

- i. Show that the equations of the tangents at P and Q are $y=px-ap^2$ and $y=qx-aq^2$ respectively.
- ii. Show that the coordinates of S and R are
 - $S(2ap, 2apq aq^2)$ $R(2aq, 2apq ap^2)$
- · iii. Show that PQRS is a parallelogram.
- iv. Show that the area of this parallelogram is $2a^2 |p-q|^3$.

Question 14 continues overleaf...

Question 14 continued from the previous page...

(b) A projectile is thrown horizontally from the top of a 125 m tower with velocity V metres per second. It clears a second tower of height 100 m by a distance of c metres, as shown. The two towers are $20\sqrt{5}$ metres apart.

i. The equations of motion for this system are

$$\begin{cases} x = Vt \\ y = -5t^2 + 125 \end{cases}$$

(Do not prove this)

Where is the origin of the system being taken from?

- ii. Show that $V = \frac{100}{\sqrt{25-c}}$.
- iii. Prove that the minimum initial speed of the projectile to just clear the $100\,\mathrm{m}$ tower is $20\,\mathrm{ms}^{-1}$.
- iv. Hence, find how far past the 100 m tower will the projectile strike the ground.
- v. Determine the vertical component of the velocity of the projectile when it strikes the ground.

End of paper.

Suggested Solutions

Section I

(Lowe)

1. (C) 2. (B) 3. (A) 4. (B) 5. (D)

6. (D) 7. (C) 8. (D) 9. (A) 10. (C)

Question 11 (Lam)

- (a) (3 marks)
 - ✓ [1] for multiplying by square of denominator.
 - [0] for entire part if only multiplying by denominator.
 - √ [1] for each correct inequality.

$$\begin{array}{c} \frac{1}{x} > x \\ \times x^{2} \\ \times x^{2} \end{array}$$

$$x > x^{3}$$

$$x^{3} - x < 0$$

$$x(x^{2} - 1) < 0$$

$$x(x - 1)(x + 1) < 0$$

From the sketch

$$x < -1 \text{ or } 0 < x < 1$$

- (b) (2 marks)
 - √ [1] for correct primitive.
 - √ [1] for correct evaluation of limits.

$$\int_0^2 \frac{dx}{\sqrt{16 - x^2}} = \left[\sin^{-1} \frac{x}{4} \right]_0^2$$

$$= \sin^{-1} \frac{1}{2} - \sin^{-1} 0$$

$$= \frac{\pi}{6}$$

- (c) (3 marks)
 - ✓ [1] for drawing relevant right-angled triangle.
 - \checkmark [1] for expanding $\sin 2\alpha$.
 - √ [1] for final answer.

Let $\alpha = \tan^{-1} \frac{3}{7}$. Then $\tan \alpha = \frac{3}{7}$:

$$\sin\left(2\tan^{-1}\frac{3}{7}\right) \equiv \sin 2\alpha$$

$$= 2\sin\alpha\cos\alpha$$

$$= 2\times\frac{3}{\sqrt{58}}\times\frac{7}{\sqrt{58}}$$

$$= \frac{42}{58} = \frac{21}{29}$$

- (d) (3 marks)
 - ✓ [1] for factorising expression into $\sin \theta (2\cos \theta 1) = 0$.
 - \checkmark [1] for solutions in positive integral multiples of π .
 - \checkmark [1] for solutions in multiples of $\frac{\pi}{3}$.

$$\sin 2\theta = \sin \theta$$

$$2 \sin \theta \cos \theta - \sin \theta = 0$$

$$\sin \theta (2 \cos \theta - 1) = 0$$

$$\sin \theta = 0 \qquad \cos \theta = \frac{1}{2}$$

$$\theta = 0, \pi, 2\pi \qquad \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$\therefore \theta = 0, \pi, 2\pi, \frac{\pi}{3}, \frac{5\pi}{3}$$

- (e) (4 marks)
 - √ [1] for changing limits.
 - √ [1] for making algebraic substitution.
 - √ [1] for correct primitive.
 - √ [1] for final answer.

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

Letting $u = \tan x$,

$$\frac{du}{dx} = \sec^2 x$$

$$\therefore du = \sec^2 x \, dx$$

$$x = 0 \Rightarrow u = 0$$

$$x = \frac{\pi}{4} \Rightarrow u = 1$$

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

$$= \int_{u=0}^{u=1} \frac{\sec^2 x \, dx}{3 + u^2}$$

$$= \int_0^1 \frac{du}{3 + u^2}$$

$$= \frac{1}{\sqrt{3}} \left[\tan^{-1} \frac{u}{\sqrt{3}} \right]_0^1$$

$$= \frac{1}{\sqrt{3}} \left(\tan^{-1} \frac{1}{\sqrt{3}} - \tan^{-1} 0 \right)$$

$$= \frac{1}{\sqrt{3}} \times \frac{\pi}{6}$$

$$= \frac{\pi}{6\sqrt{3}} \left(= \frac{\pi\sqrt{3}}{18} \right)$$

Question 12 (Lowe)

- (a) i. (3 marks)
 - \checkmark [1] for $\alpha\beta = 2$.
 - $\checkmark \quad [1] \text{ for } \alpha + \beta = 4.$
 - ✓ [1] for final answer
 - $P(x) = x^3 6x^2 + ax 4$. Let the
 - roots be α , β and $\alpha\beta$.
 - Sum of roots:

$$\alpha + \beta + \alpha \beta = -\frac{b}{a} = 6 \quad (12.1)$$

• Pairs of roots:

$$\alpha\beta + \alpha^2\beta + \beta^2\alpha = \frac{c}{a} = a$$
 (12.2)

Product of roots:

$$\alpha\beta (\alpha\beta) = -\frac{d}{a} = 4$$

$$\alpha^2\beta^2 = 4$$

$$\therefore \alpha\beta = 2 \qquad (12.3)$$

as roots are positive.

Substitute (12.3) into (12.1):

$$\alpha + \beta + 2 = 6$$

$$\alpha + \beta = 4 \qquad (12.4)$$

Substitute (12.4) into (12.2) to find a:

$$\alpha\beta + \alpha\beta(\alpha + \beta) = a$$

$$2 + 2(4) = a$$

$$\therefore a = 10$$

ii. (2 marks)

√ [2] for correct application of facto theorem.

If x-2 is a factor then P(2)=0.

$$P(2) = 23 - 6(22) + 10(2) - 4$$

= 8 - 24 + 20 - 4 = 0

- (b) (3 marks)
 - \checkmark [1] for $\frac{dr}{dt}$.
 - $\checkmark [1] \text{ for } \frac{dA}{dt} = \frac{dA}{dt} \times \frac{dr}{dt}$
 - √ [1] for final answer.

$$\frac{dV}{dt} = 20 = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dr} = \frac{4}{3} \times \pi \times 3r^2 = 4\pi r^2$$

$$\therefore \frac{dV}{dt} = 20 = 4\pi r^2 \Big|_{r=5} \times \frac{dr}{dt}$$

$$= 4\pi \times 25 \times \frac{dr}{dt}$$

$$\therefore \frac{dr}{dt} = \frac{1}{5\pi}$$

Now
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$SA = 4\pi r^2$$

$$\therefore \frac{dA}{dr} = 8\pi r$$

$$\frac{dA}{dt} = 8\pi r \Big|_{r=5} \times \frac{1}{5\pi}$$

$$= 8 \text{ cm}^2 \text{s}^{-1}$$

- (c) i. (3 marks)
 - \checkmark [1] for using $\frac{d}{dx}(\frac{1}{2}v^2)$ to find acceleration.
 - \checkmark [1] obtaining $\ddot{x} = -4x + 4$.
 - ✓ [1] factorising and noting form $\frac{dv}{dt} = -n^2(x x_0)$ for SHM.

$$v^{2} = -4x^{2} + 8x + 32$$

$$\frac{1}{2}v^{2} = -2x^{2} + 4x + 16$$

$$\ddot{x} = \frac{dv}{dt} = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right)$$

$$= \frac{d}{dx}\left(-2x^{2} + 4x + 16\right)$$

$$= -4x + 4 = -4(x - 1)$$

As acceleration is proportion to the opposite direction of displacement, hence the particle is moving in simple harmonic motion with centre at x = 1.

- ii. (2 marks)
 - \checkmark [1] for x = 4, x = -2.
 - √ [1] for finding amplitude.

The amplitude occurs when $\dot{x} = 0$.

$$-4x^{2} + 8x + 32 = 0$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$\therefore x = 4, -2$$

$$a = \frac{4 + |-2|}{2} = 3$$

As the centre of motion is x = 1 and particle's maximum displacement is 4 or -2, therefore the amplitude is a = 3.

iii. (1 mark)

Maximum acceleration occurs at the amplitude, i.e. x = 4 or x = -2.

$$\ddot{x} = -4(x-1)\Big|_{x=-2}$$

= $-4(-2-1) = 12$

Question 13 (Ziaziaris)

- (a) (3 marks)
 - √ [1] for proving base case.
 - ✓ [1] for inductive step.
 - √ [1] for required proof.

Let P(n) be the statement $5^n + 2 \times 11^n$ is divisible by 3, i.e.

$$5^n + 2 \times 11^n = 3J$$

where $J \in \mathbb{N}$.

Base case: P(1):

$$5^1 + 2 \times 11 = 5 + 22 = 27$$

which is divisible by 3. Hence P(1) is true.

- · Inductive step:
 - Assume P(k) is true for some $k \in \mathbb{N}, \ k < n$, i.e.

$$5^k + 2 \times 11^k = 3M$$

where $M \in \mathbb{N}$. Alternatively,

$$5^k = 3M - 2 \times 11^k$$

- Examine P(k+1):

$$5^{k+1} + 2 \times 11^{k+1}$$

$$= 5^k 5^1 + 2 \times 11^{k+1}$$

$$= 5 \left(3M - 2 \times 11^k\right) + 2 \times 11^{k+1}$$

$$= 3 \times 5M - 10 \times 11^k + 2 \times 11 \times 11^k$$

$$= 3 \times 5M - 10 \times 11^k + 22 \times 11^k$$

$$= 3 \times 5M + 12 \times 11^k$$

$$= 3 \left(5M + 4 \times 11^k\right) \equiv 3P$$

where $P \in \mathbb{N}$. Hence P(k+1) is true.

Since $k \in \mathbb{N}$ and truth in P(k) also leads to truth in P(k+1), therefore P(n) is true by induction.

(b) (3 marks)

- (d) i. (1 mark)
- $\sqrt{1}$ for coverting integrand to $\frac{\sin y}{\cos y}$
- ✓ [1] for correct primitive
- √ [1] for final answer.

$$A = \int_0^{\frac{\pi}{4}} \tan y \, dy$$

$$= \int_0^{\frac{\pi}{4}} \frac{\sin y}{\cos y} \, dy$$

$$= \left[-\log_e(\cos y) \right]_0^{\frac{\pi}{4}}$$

$$= -\log_e \cos \frac{\pi}{4} + \log_e \cos 0$$

$$= -\log_e \frac{1}{\sqrt{2}} + \log_e 1$$

$$= -\log_e 2^{-\frac{1}{2}} = \frac{1}{2} \log_e 2$$

(c) (4 marks) - marking scheme embedded inline. Presence of √indicates 1 mark.

- ✓ Let $\angle DCE = \alpha$ and $\angle DEC = \beta$. ∴ $\angle CBA = \alpha$ (∠ in alternate segment)
- ✓ Similarly, ∠ABE = β (∠ in alternate segment)
- ✓ Also, $\angle CDE = 180^{\circ} (\alpha + \beta)$. (Angle sum of $\triangle CDE$)
- Hence $\angle CDE + \angle CBE = 180^{\circ}$
- ✓ Opposite ∠ in BCDE are supplementary. Hence BCDE is a cyclic quadrilateral.

- $v_{-3g} = 3g_{-3g} + Ae^{-\frac{1}{3}t}$ $v 3g = Ae^{-\frac{1}{3}t}$ $\frac{dv}{dt} = -\frac{1}{3}\underbrace{Ae^{-\frac{1}{3}t}}_{=(v-3g)}$ $= -\frac{1}{2}(v 3g)$
- ii. (1 mark) t=0, v=g $\therefore g=3g+Ae^0$ $\therefore A=-2g$
- iii. (2 marks) v = 2g, t = ? $2g = 3g 2ge^{-\frac{1}{3}t}$ $-g = -2ge^{-\frac{1}{3}t}$ $\frac{1}{2} = e^{-\frac{1}{3}t}$ $-\frac{1}{2}t = \log_e \frac{1}{2} = -\log_e 2$

 $t = 3 \log_e 2 \approx 2.1 \text{ seconds}$

iv. (1 mark) As $t \to \infty$, $v \to 3g$.

Question 14 (Ireland/Fletcher)

(a) i. (2 marks)

 \checkmark [1] for proving $\frac{dy}{dx} = p$ at P.

 \checkmark [1] for equation of tangent at P.

$$x^{2} = 4ay \quad \Rightarrow \quad y = \frac{x^{2}}{4a}$$
$$\frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a}$$

At x = 2ap

$$\frac{dy}{dx} = \frac{2ap}{2a} = p$$

Equation of the tangent at P:

$$y - ap^2 = p(x - 2ap) = px - 2ap^2$$
$$y = px - ap^2$$

Similarly, the tangent at Q is

$$y = qx - aq^2$$

ii. (2 marks)

 \checkmark [1] for each y coordinate.

Coordinates of S arise from the intersection of x = 2ap and $y = qx - aq^2$:

$$y = q(2ap) - aq^2 = 2apq - aq^2$$
$$\therefore S(2ap, 2apq - aq^2)$$

Coordinates of R arise from the intersection of x = 2aq and $y = px - ap^2$:

$$y = p(2aq) - ap^{2} = 2apq - ap^{2}$$
$$\therefore R(2aq, 2apq - ap^{2})$$

iii. (2 marks)

✓ [1] for showing $PS \parallel QR$.

 \checkmark [1] for showing PS = QR.

As PS = QR, hence one pair of opposite sides equal and parallel. Hence PQRS is a parallelogram.

Alternatively, if PQRS is a parallelogram, then the diagonals bisect each other; i.e. QS and PR share the same midpoint. Show via midpoint formula results in

$$MP_{QS} = \left(\frac{a(p+q)}{2}, apq\right)$$

 $MP_{PR} = \left(\frac{a(p+q)}{2}, apq\right)$

iv. (2 marks)

 \checkmark [1] for h (fully)

√ [1] for area.

• Use A = bh.

- h is perpendicular distance from Q to PS.
- Use $b = d_{PS}$.

Using the perpendicular dist formula with $x = 2ap \& Q(2aq, aq^2)$:

$$\begin{split} h &= \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \\ &= \frac{|2aq(1) + 0 - 2ap|}{\sqrt{1^2 + 0}} \\ &= \frac{|2aq - 2ap|}{1} = 2a|q - p| \\ &= 2a|p - q| \end{split}$$

As
$$|p-q| = |q-p|$$
.
 $A = bh$

$$= 2a |p - q| \times a(p - q)^{2}$$
$$= 2a^{2} |p - q|^{3}$$

$$d_{PS} = \sqrt{(2ap - 2ap)^2 + (ap^2 - (2apq - aq^2))^2}$$

$$= \sqrt{(a(p-q)^2)^2}$$

$$= a(p-q)$$

$$d_{QR} = \sqrt{(2aq - 2aq)^2 + (aq^2 - (2apq - ap^2))}$$

$$= \sqrt{a(q-p)^2} = \sqrt{a(p-q)^2}$$

$$= a(p-q)$$

(b) i. (1 mark)
Origin is at the base of tower.

ii. (2 marks)

 \checkmark [1] for $100 + c = -5 \left(\frac{400 \times 5}{V^2}\right) + 125$.

√ [1] for final result shown.

When $x = 20\sqrt{5}$, y = 100 + c. Using x = Vt,

$$20\sqrt{5} = Vt$$
$$\therefore t = \frac{20\sqrt{5}}{V}$$

Substitute into $y = -5t^2 + 125$,

$$100 + c = -5\left(\frac{20\sqrt{5}}{V}\right)^{2} + 125$$

$$= -5\left(\frac{400 \times 5}{V^{2}}\right) + 125$$

$$-25 + c = -5 \times \frac{400 \times 5}{V^{2}}$$

$$25 - c = \frac{25 \times 400}{V^{2}}$$

$$V^{2} = \frac{10000}{25 - c}$$

$$\therefore V = \frac{100}{\sqrt{25 - c}} \quad (V > 0)$$

iii. (1 mark) Projectile just clears tow when c = 0.

$$V = \left. \frac{100}{\sqrt{25 - c}} \right|_{c=0} = 20 \,\text{ms}^{-1}$$

iv. (2 marks)

 $\sqrt{\ }$ [1] for x = 100.

✓ [1] for final answer.

Projectile strikes ground wh u = 0.

$$-5t^2 + 125 = 0$$
$$5t^2 = 125$$
$$\therefore t^2 = 25 \implies t = 5$$

When t=5,

$$x = Vt = 20 \times 5 = 100$$

Hence projectile will strike ground $100 - 20\sqrt{5}$ metres past second tower.

v. (1 mark)

$$y = -5t^{2} + 125$$

$$\dot{y} = -10t \Big|_{t=5} = -50 \,\text{ms}^{-1}$$