STUDENT NUMBER/NAME:

NSW INDEPENDENT SCHOOLS

2014 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in Question 11 14
- Write your student number and/or name at the top of every page

Total marks - 70
Section I - Pages 3 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-9

60 marks

Attempt Questions 11 – 14

Allow about 1 hour 45 minutes for this section

This paper MUST NOT be removed from the examination room

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_x x$, x > 0

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

- 1 What is the value of $\lim_{x\to 0} \frac{\sin 3x}{2x}$?
 - (A) 0
 - (B)
 - (C)
 - (D)
- 2 Which of the following is a solution of the equation $2^x = 5$?
 - $x = \sqrt{5}$ (A)
 - $x = \log_2 5$
- 3 Which of the following is an expression for $\cos^4 x \sin^4 x$?
 - (A) $\cos 2x$
 - $\cos^2 2x$ (B)
 - (C) $\cos 4x$
 - $\cos^2 4x$ (D)
- 4 Which of the following is an expression for $\frac{dy}{dx}$ if $x = \frac{1}{2}at$ and $y = at^2$?
 - (A) t
 - (B) 2t
 - (C) 2at
 - 4t(D)

MIATE

Student name / number

Marks

1

5 Which of the following is an expression for $1+\sec x$ in terms of $t=\tan \frac{x}{2}$?

- (A)

6 Which of the following is the range of the function $y = 2\sin^{-1} x + \frac{\pi}{2}$?

- $-\pi \le y \le \pi$ (À)
- $-\pi \le y \le \frac{3\pi}{7}$
- $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- $-\frac{\pi}{2} \le y \le \frac{3\pi}{2}$

7 Which of the following is an asymptote of the curve $y = \frac{x^2 - 4}{x}$?

- y = x
- x = 2
- x=1
- y=0

8 Which of the following is an expression for $\int \frac{1}{4x^2+1} dx$?

- ½ tan-1 × (A)
- $\frac{1}{2} \tan^{-1} 2x$
- $\tan^{-1}2x$

Student name / number	or
-----------------------	----

Marks

- 9 Which of the following is the coefficient of the term in x^n in the expansion of $(1+x)^n+(1-x)^n$?
- 1

- (A) 0
- (B) $\frac{1+(-1)^{\prime}}{2}$
- (C) $1+(-1)^{n}$
- (D) 2
- 10 P(x, y) is a variable point which moves on the curve $y = x^3$ such that the x coordinate of P is increasing at a constant rate of 0.05 cm s^{-1} . What is the rate at which the y coordinate of P is increasing when x = 2?
 - (A) $0.4 \, \text{cm s}^{-1}$
 - (B) $0.6 \,\mathrm{cm} \,\mathrm{s}^{-1}$
 - (C) 8 cm s⁻¹
 - (D) 12 cm s⁻¹

Student name / numbe	r

Marks

Section II

60 Marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer the questions on your own paper, or in writing booklets if provided.

Start each question on a new page.

All necessary working should be shown in every question.

Question 11 (15 marks)

Use a separate writing booklet.

- (a) Find the number of ways in which the letters of the word CIRCLE can be arranged in a row so that the two vowels are in the two end positions.
- (b) $P(2ap, ap^2)$ and $Q(2ap^2, ap^4)$ are two points on the parabola $x^2 = 4ay$.
- (i) Show that the chord PQ has gradient $m = \frac{1}{2}(p^2 + p)$.

1 2

2

3

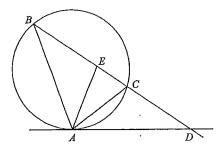
3

1

3

- (ii) Find the minimum gradient of the chord PQ and the coordinates of the point P on the parabola at which this minimum value occurs.
- Solve the inequality $\frac{x^2 + x 6}{x} \ge 0$.

(d)



In the diagram ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D. E is the point on BD such that DA = DE. Show that EA bisects $\angle BAC$...

- $=\frac{1}{6}$.
- (e)(i) Show that the curves $y = \sin^{-1} x$ and $y = \cos^{-1} x$ intersect at the point where $x = \frac{1}{\sqrt{2}}$
 - (ii) Find correct to the nearest degree the acute angle between the tangents to the curves at their point of intersection.

Student name / number

Questi	ion 12 (15 marks) Use a separate writing booklet.	Marks
(a)	Use the method of Mathematical Induction to show that $5^n - 4n - 1$ is divisible by 4 for all positive integers $n \ge 2$.	3
(b)	A curve $y = f(x)$ has gradient function $\frac{dy}{dx} = 2\cos^2 2x$ and passes through the point $\left(\frac{\pi}{4}, 0\right)$. Find the equation of the curve.	3
(c)	Use the substitution $u = x - 1$ to evaluate $\int_{2}^{5} \frac{x}{\sqrt{x - 1}} dx$.	3
(d)(i)	Show that the x coordinates of the stationary points on the curve $y = x \cos x$ satisfy the equation $\tan x - \frac{1}{x} = 0$.	. 2
(ii)	Show that the equation $\tan x - \frac{1}{x} = 0$ has a root α such that $\frac{\pi}{8} < \alpha < \frac{3\pi}{8}$.	2
(iii)	Use one application of Newton's method with an initial approximation $\alpha_0 = \frac{\pi}{4}$ to find the next approximation, giving your answer correct to one decimal place.	2

		Marks
uest	ion 13 (15 marks) Use a separate writing booklet.	
a)	At time t years after observations began at the start of 2010 the number N of individuals in a population is given by $N=100+500~e^{-0.1t}$.	
(i)	Show that $\frac{dN}{dt} = -0.1(N-100)$.	1
(ii)	Sketch the graph of N as a function of t showing clearly the initial population size and the limiting population size.	2
(iii)	Find the year and month during which the rate of decrease of the population is expected to fall to half its initial value.	2
)	A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms ⁻¹ and acceleration \ddot{x} ms ⁻² given by $\ddot{x} = -2(x-1)$. Initially the particle is 2m to the right of O and moving away from O with speed $\sqrt{6}$ ms ⁻¹ .	
(i)	Show by integration that $v^2 = 2(3+2x-x^2)$.	2
(ii)	Find the values of a and b if $x = b + a\cos(nt + \alpha)$ and $a > 0$.	2
(iii)	Find the values of n and α in this expression for x if $n > 0$ and $0 < \alpha < 2\pi$.	2
3)	Four different-coloured, fair dice are rolled together.	
(i)	Find the probability that all four dice show different scores.	2
(ii)	Find the probability that all four dice show the same score.	2

Student name / number

Student name / number _____

Marks

2

2

Question 14 (15 marks)

Use a separate writing booklet.

- (a) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ given by $v = \frac{1}{2}(1-x^2)$ and acceleration a ms⁻². Initially the particle is at O.
 - (i) Find an expression for a in terms of x.
- (ii) Show that $\frac{2}{1-x^2} = \frac{1}{1+x} + \frac{1}{1-x}$.
- (iii) Show that $x = \frac{e' 1}{e' + 1}$.
- (iv) Find the limiting position of the particle.
- (b) A vertical tower of height 20 metres stands on horizontal ground. A particle is projected from a point O at the top of the tower with speed $35\,\mathrm{ms}^{-1}$ at an angle α above the horizontal. It moves in a vertical plane under gravity, where the acceleration due to gravity is $g=10\,\mathrm{ms}^{-2}$, and hits the ground after T seconds at a distance 140 metres from the foot of the tower. At time t seconds its horizontal and vertical displacements from O are x metres and y metres respectively.
- (i) Use integration to show that $x = 35t \cos \alpha$ and $y = 35t \sin \alpha 5t^2$.
- (ii) Show that $T^4 57 T^2 + 800 = 0$.
- (iii) Find the two possible times of flight until the particle hits the ground.
- (c) Use the Binomial expansion of $(1+x)^n$ and differentiation to show that $\sum_{r=2}^n {^rC_2}^n C_r = {^nC_2} \, 2^{n-2} \quad \text{for all integers} \quad n \ge 2 \ .$

Independent Trial HSC 2014

Mathematics Extension 1 Marking Guidelines

Section 1 Questions 1-10 (1 mark each)

Question	Answer	Solution	Outcomes
1.	D	$\lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \left\{ \lim_{x \to 0} \frac{\sin 3x}{3x} \right\} = \frac{3}{2} \times 1 = \frac{3}{2}$	Н5
2.	С	$2^{x} = 5$ $x \log_{e} 2 = \log_{e} 5$ $\therefore x = \frac{\log_{e} 5}{\log_{e} 2}$	Н3
3.	A	$\cos^4 x - \sin^4 x = (\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) = \cos 2x$	H5
4.	D	$x = \frac{1}{2}at \qquad y = at^{2}$ $\frac{dx}{dt} = \frac{1}{2}a \qquad \frac{dy}{dt} = 2at \qquad \therefore \frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt} = 4t$	PE4
5.	В	$t = \tan \frac{x}{2} \implies 1 + \sec x = 1 + \frac{1 + t^2}{1 - t^2} = \frac{\left(1 - t^2\right) + \left(1 + t^2\right)}{1 - t^2} = \frac{2}{1 - t^2}$	H5
6.	D	$-2 \times \frac{\pi}{2} \le 2\sin^{-1}x \le 2 \times \frac{\pi}{2} \qquad \qquad \therefore -\frac{\pi}{2} \le 2\sin^{-1}x + \frac{\pi}{2} \le \frac{3\pi}{2}$	HE4
7.	A	$y = \frac{x^2 - 4}{x} = x - \frac{4}{x} \therefore y - x = \left \frac{4}{x} \right \to 0 \text{ as } x \to \infty$	P5
8.	С	$\int \frac{1}{4x^2 + 1} dx = \frac{1}{2} \int \frac{2}{\left(2x\right)^2 + 1} dx = \frac{1}{2} \tan^{-1} 2x$	HE4
9.	С	Term in x^n is ${}^nC_nx^n + {}^nC_n(-x)^n = {}^nC_nx^n\{1 + (-1)^n\} = x^n\{1 + (-1)^n\}$	HE3
10.	В	$y = x^3$ $\therefore \frac{dy}{dt} = 3x^2 \frac{dx}{dt} = 12 \times 0.05 = 0.6$ when $x = 2$	HE5

Section II

Ouestion 11

a. Outcomes assessed: H5

Marking Guidelines			
	Criteria .	Marks	
	• count the arrangements of the consonants with the repetition of C	1	
	 multiply by 2 for the arrangement of the vowels 	1	

Answer

 $2 \times \frac{4!}{2!} = 24$ arrangements

b. Outcomes assessed: PE3

Markir	ıg G	uide	lines

Criteria	Marks
i • find gradient	1
ii • find the minimum value of the gradient and the corresponding value of p	1
• find coordinates of P for this value of p	1

i.
$$m_{pQ} = \frac{ap^2(p^2-1)}{2ap(p-1)} = \frac{p(p-1)(p+1)}{2(p-1)} = \frac{1}{2}(p^2+p)$$

ii.
$$m_{PQ} = \frac{1}{2} \left(p + \frac{1}{2}\right)^2 - \frac{1}{8}$$
. Hence minimum value of m_{PQ} is $-\frac{1}{8}$ when $p = -\frac{1}{2}$ and P has coordinates $\left(-a, \frac{1}{4}a\right)$.

c. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
apply an appropriate method for solving a variable-denominator inequality	1
• show solution includes x such that $x \ge 2$	1
• find inequality determining the remaining solutions for x	1

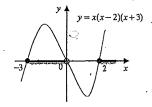
Answer

$$\frac{x^2 + x - 6}{x} \ge 0$$

$$x(x^2 + x - 6) \ge 0 \text{ and } x \ne 0$$

$$x(x - 2)(x + 3) \ge 0 \text{ and } x \ne 0$$

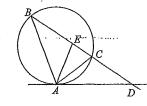
$$-3 \le x < 0 \text{ or } x \ge 2$$



d. Outcomes assessed: PE2, PE3

Mariong Guidennes	
Criteria	Marks
• use the alternate segment theorem to find one pair of equal angles	1
• complete a sequence of deductions to arrive at the required result	1
• justify these deductions by quoting appropriate geometric properties	1

Answer



$$\angle DAC = \angle CBA$$
 (Alternate segment theorem)
$$\angle DEA = \angle DAE$$
 (\angle ' opp. equal sides are equal in $\triangle ADE$)
$$\therefore \angle DEA = \angle CBA + \angle CAE$$

$$\angle EA = \angle CBA + \angle CAE$$
(Ext. \angle equals sum of int. opp. \angle ' in $\triangle ABE$)
$$\therefore \angle DEA = \angle CBA + \angle CAE$$
Hence EA bisects $\angle BAC$

Q 11 (cont)

e. Outcomes assessed: H5, HE4

Marking Guidelines

Marking Odidennes		
Criteria	Marks	
i • explain why the curves intersect at the stated value of x	1	
ii • evaluate both derivatives at this value of x	1	
• write an expression for the tangent of the required angle	1	
evaluate this angle to the nearest degree	1	

Answer

i. $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{10}$. Hence the curves $y = \sin^{-1} x$ and $y = \cos^{-1} x$ intersect at $(\frac{1}{10}, \frac{\pi}{4})$.

ii.
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} = \frac{1}{\sqrt{\frac{1}{a}}} = \sqrt{2}$$
 and $\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}} = \frac{-1}{\sqrt{\frac{1}{a}}} = -\sqrt{2}$ when $x = \frac{1}{\sqrt{2}}$.

Hence the acute angle θ between the tangents to the curves at the point of intersection is given by

$$\tan \theta = \left| \frac{\sqrt{2} - \left(-\sqrt{2} \right)}{1 + \sqrt{2} \left(-\sqrt{2} \right)} \right| = 2\sqrt{2}$$
 . $\theta \approx 71^{\circ}$ (to the nearest degree)

Question 12

a. Outcomes assessed: HE2

3.6.	 A	lelines

Marking Ouncentes		
Criteria	Marks	
• define an appropriate sequence of statements and establish the truth of the first statement	1	
• rearrange the expression of the $(k+1)^{st}$ statement to incorporate the k^{th} statement explicitly	1	
• explain why the truth of the k^{th} statement implies the truth of $(k+1)^{st}$ and complete the induction	1	

Answer

Let the sequence of statements S_n , n=2,3,4,... be defined by $S_n: 5^n-4n-1=4I$ for some integer I.

Consider S_2 : $5^2-4\times2-1=16=4\times4$ Hence S_2 is true.

If S_k is true: $5^k - 4k - 1 = 4I$ for some integer I. *

Consider S_{k+1} : $5^{k+1} - 4(k+1) - 1 = (4+1)5^k - 4k - 4 - 1$

 $=(5^k-4k-1)+4(5^k-1)$

 $=4I+4(5^k-1)$

 $=4\times(I+5^k-1)$ where $(I+5^k-1)$ is integral

if S, is true using *

Hence if S_k is true then S_{k+1} is true. But S_2 is true, hence S_3 is true, and so on. Therefore by Mathematical Induction, $5^n - 4n - 1$ is divisible by 4 for all integers $n \ge 2$.

Q12 (cont)

b. Outcomes assessed: H5

Marking Guidelines		
Criteria	Marks	
• use an appropriate trigonometric identity to enable integration	1	
identify the family of primitive functions	1	
• select the particular member of this family that passes through the stated point	1	

Answer

$$\frac{dy}{dx} = 2\cos^2 2x$$

$$= 1 + \cos 4x$$

$$\therefore y = x + \frac{1}{4}\sin 4x + c, \quad c \text{ constant}$$

$$x = \frac{\pi}{4}$$

$$y = 0$$

$$\Rightarrow 0 = \frac{\pi}{4} + \frac{1}{4}\sin \pi + c$$

$$y = 0$$

$$\therefore c = -\frac{\pi}{4}$$

$$\therefore y = x + \frac{1}{4}\sin 4x - \frac{\pi}{4}$$

c. Outcomes assessed: HE6

Marking Guidelines

Man mile Outdonned		
Criteria	Marks	
• transform the definite integral by applying the given substitution	1	
• find the corresponding primitive function	1	
evaluate the definite integral using the transformed limits	1	

Answer

u = x - 1	$\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx = \int_{1}^{4} \frac{u+1}{\sqrt{u}} du$
du = dx	$= \int_{1}^{4} \left(u^{\frac{1}{2}} + u^{-\frac{1}{2}} \right) du$
$x=2 \Rightarrow u=1$	$= \left[\frac{2}{3}u^{\frac{1}{4}} + 2u^{\frac{1}{4}}\right]_{1}^{4}$
$x=5 \Rightarrow u=4$	$= \frac{2}{3}(8-1)+2(2-1)$ $= 6\frac{2}{3}$
	-03

d. Outcomes assessed: H5, PE3

Marking Guidelines

TIME GUIGORIES		
Criteria	Marks	
i • differentiate and set derivative equal to zero	1	
• justify rearrangement to give the required equation	1	
ii • note the continuity of the function over the stated interval	1	
• establish the change of sign over the stated interval	1	
iii • substitute correctly into formula associated with Newton's method	1	
evaluate to obtain the next approximation	11	

Answer

i.
$$y = x\cos x$$

$$\frac{dy}{dx} = \cos x - x\sin x$$

$$\frac{dy}{dx} = 0 \implies \frac{x\sin x = \cos x}{\tan x = \frac{1}{x}}$$
(since $\frac{dy}{dx} \neq 0$ for $x = 0$ nor $\cos x = 0$.). ...

Hence x coordinates of stationary points satisfy $\tan x - \frac{1}{x} = 0$.

ii. $f(x) = \tan x - \frac{1}{x}$ is continuous for $\frac{\pi}{8} \le x \le \frac{3\pi}{8}$ and $f(\frac{\pi}{8}) \approx -2.1 < 0$, $f(\frac{3\pi}{8}) \approx 1.6 > 0$.

iii. $f'(x) = \sec^2 x + \frac{1}{x^2}$. Hence next approximation is $\alpha_1 = \frac{\pi}{4} - \frac{1 - \frac{4}{\pi}}{2 + \left(\frac{4}{\pi}\right)^2} \approx 0.9$

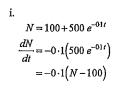
Question 13

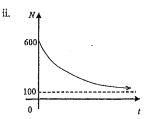
a. Outcomes assessed: HE3

Marking Guidelines

Criteria		Marks
i • differentiate and rearrange		1
ii - correct shape with correct initial population size		1
 asymptote to show limiting population size 		1
iii • write equation for t using initial rate of decrease	-	1
• solve for t and interpret solution		1

Answer





iii.
$$t = 0 \Rightarrow N = 600$$
 and $\frac{dN}{dt} = -0.1 \times 500 = -50$.

$$\frac{dN}{dt} = -25 \implies N - 100 = 250$$

$$e^{-0.1t} = \frac{1}{2} - \frac{1}{10}t = -\ln 2$$

Time taken is 6.93 years i.e. 6 years 11.17 months.

$$-\frac{1}{10}t = -\ln 2$$
$$t = 10\ln 2$$

.. December, 2016.

b. Outcomes assessed: HE3

Marking Guidelines

. Harking Guidennes	
Criteria	Marks
i • use appropriate expression for \ddot{x} and obtain primitive	1
• use initial conditions to evaluate the constant of integration and rearrange	1
ii • state value of b	1
• find value of a	1
iii • state value of n	1
• use initial conditions to evaluate α	1

Answer

i.
$$\ddot{x} = -2(x-1)$$

$$\frac{dv^2}{dx} = -4(x-1)$$

$$v^2 = -2(x-1)^2 + c$$

$$(x-1)^2 = -2$$

$$\begin{cases}
 t = 0 \\
 x = 2 \\
 v = \sqrt{6}
 \end{cases}
 \qquad
 \begin{cases}
 6 = -2 + c \\
 v^2 = -2(x - 1)^2 + 8 \\
 v^2 = 2(3 + 2x - x^2)
 \end{cases}$$

ii.
$$x = b + a\cos(nt + \alpha)$$

Centre of motion is at x=1 : b=1

$$v=0 \Rightarrow 2(x-1)^2 = 8$$

$$x=-1, x=3$$

.. oscillation between these x values with amplitude 2

iii.
$$^{2}=2$$
 : $=\sqrt{2}$. $=+$ $\sqrt{+\alpha}$: $=0$ $\cos\alpha=\frac{1}{2}$. $\sin\alpha<0$ >0 $-\alpha=\frac{5\pi}{2}$

Q13 (cont)

c. Outcomes assessed: HE3

Marking Guidelines		
Criteria	Marks	
i • count the number of arrangements comprising the event	1	
calculate the probability	1	
ii • count the possible outcomes	1	
calculate the probability	1	

Answer

i.
$$\frac{^6P_4}{6^4} = \frac{5}{18}$$

ii.
$$\frac{6}{6^4} = \frac{1}{216}$$

Question 14

a. Outcomes assessed: HE5

Marking Guidelines

Criteria	Marks
i • use an appropriate expression for a	1
ii • rearrange to show result	1
iii • find primitive function for t in terms of x	1
 use initial conditions to evaluate constant of integration 	1
• rearrange to obtain x in terms of t	1
iv • find limiting value of x as $t \to \infty$	1

Answer

i.
$$v = \frac{1}{2}(1-x^2)$$
 ii. $1-x^2 = (1+x)(1-x)$

$$v \frac{dv}{dx} = \frac{1}{2}(1 - x^2)(-x)$$
$$\therefore a = -\frac{1}{2}x(1 - x^2)$$

$$\frac{1}{1+x} + \frac{1}{1-x} = \frac{(1-x) + (1+x)}{1-x^2}$$
$$= \frac{2}{1-x^2}$$

iii.
$$\frac{dx}{dt} = \frac{1}{2} \left(1 - x^2 \right)$$

$$\frac{dt}{dx} = \frac{2}{1 - x^2}$$

$$= \frac{1}{1 + x} + \frac{1}{1 - x}$$

$$t = \ln(1 + x) - \ln(1 - x) + c$$

$$t = \ln\left(\frac{1+x}{1-x}\right) + c$$

$$t = 0$$

$$x = 0$$

$$t = \ln\left(\frac{1+x}{1-x}\right)$$

$$t = \ln\left(\frac{1+x}{1-x}\right)$$

$$e^{t} = \frac{1+x}{1-x}$$

$$e^{t} = \frac{1}{1-x}$$

$$e^{t} - xe^{t} = 1+x$$

$$e^{t} - 1 = x(e^{t} + 1)$$

$$x = \frac{e^l - 1}{e^l}$$

iv
$$x = \frac{1 - e^{-t}}{1 + e^{-t}}$$
 where $\lim_{t \to \infty} \frac{1 - e^{-t}}{1 + e^{-t}} = \frac{1 - 0}{1 + 0} = 1$.

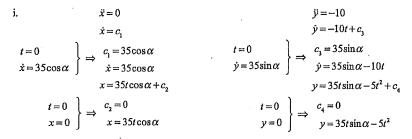
Hence moves from the origin O towards a limiting position 1 metre to the right of O.

Q14 (cont)

b. Outcomes assessed: HE3

Marking Guidelines Criteria	Marks
i • find x as a function of t by integration	1
• find y as a function of t by integration	1
ii • write simultaneous equations for T and α	1
• eliminate α to find equation for T .	1
iii • factor as quadratic in T^2 or use quadratic formula	1
• find two values of T	1

Answer



ii. When
$$t=T$$
, $y=-20$ and $x=140$.
 $35T\sin\alpha = 5T^2-20$ $7T\sin\alpha = T^2-4$
 $35T\cos\alpha = 140$ $7T\cos\alpha = 28$

$$49T^2\left(\sin^2\alpha + \cos^2\alpha\right) = \left(T^2-4\right)^2 + 28^2$$

$$T^4 - 57T^2 + 800 = 0$$

iii. $(T^2-32)(T^2-25)=0$ $\therefore T=4\sqrt{2}$ or T=5. Time of flight is $4\sqrt{2}$ s or 5 s.

c. Outcomes assessed: HE3

N. Kana	king	A		11
IVIAL	KIII2	Gui	ue	шиез

Tight Time V Time Time V				
Criteria	Marks			
write binomial expansion and differentiate once	1			
• differentiate a second time and substitute $x=1$	1			
• use definition of binomial coefficient to complete proof	1			

Answer

$$\begin{split} \frac{d^2}{dx^2} (1+x)^n &\equiv \frac{d^2}{dx^2} \binom{n_0 + {}^n C_1 x + {}^n C_2 x^2 + \dots {}^n C_r x^r + \dots + {}^n C_n x^n) \\ &= \frac{d}{dx} n (1+x)^{n-1} \equiv \frac{d}{dx} \binom{n_0 + 2^n C_2 x + \dots + r^n C_r x^{r-1} + \dots + n^n C_n x^{n-1}) \\ &= n(n-1) (1+x)^{n-2} \equiv \sum_{r=2}^n r(r-1)^n C_r x^{r-2} \end{split}$$
 Then $x=1 \Rightarrow n(n-1) 2^{n-2} = \sum_{r=2}^n r(r-1)^n C_r$, where $\frac{r(r-1)}{2} = {}^r C_2$. $\therefore \sum_{r=2}^n {}^r C_2 {}^n C_r = {}^n C_2 2^{n-2}$