STUDENT NUMBER/NAME:

NSW INDEPENDENT SCHOOLS

2014 Higher School Certificate Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in Question 11 16
- Write your student number and/or name at the top of every page

Total marks - 100

Section I - Pages 3 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-11

90 marks

Attempt Questions 11 – 16

Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

TANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Student name / number

Marks

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

- 1 Which of the following is an expression for the limiting sum of the geometric series $1+2\cos^2\theta+4\cos^4\theta+8\cos^6\theta+...$ whenever this limiting sum exists?
 - (A) $-\cos 2\theta$
 - (B) $-\sec 2\theta$
 - (C) $\cos 2\theta$
 - (D) $\sec 2\theta$
- 2 Which of the following is the range of the function $f(x) = \sin^{-1} x + \tan^{-1} x$?
 - (A) $-\pi < y < \pi$
 - **(B)** $-\pi \le y \le \pi$
 - $-\frac{3\pi}{4} \le y \le \frac{3\pi}{4}$
 - -#≤y≤#
- 3 If $e^x + e^y = 1$, which of the following is an expression for $\frac{dy}{dx}$?
 - (A)
 - (B)
 - (C)
 - (D)
- 4 Which of the following graphs is the locus of the point P representing the complex number z which moves in the Argand diagram such that |z-6|=2|z|?
 - (A) a straight line
 - (B) a circle
 - (C) an ellipse
 - a hyperbola

1

1

Student name / number

Marks

1

5 S(4,0) is a focus of the rectangular hyperbola $x^2 - y^2 = k$. Which of the following is the value of k?

- $2\sqrt{2}$ (A)
- $4\sqrt{2}$ (B)
- 8
- (D)

6 Which of the following is an expression for $\int xe^{-x} dx$?

7 The region bounded by the curve $y = \sqrt{x}$ and the y axis between y = 0 and y = 1is rotated through one revolution about the line x=1 to form a solid of volume V. Which of the following is an expression for V?

(A)
$$2\pi \int_0^1 x \sqrt{x} \ dx$$

(B)
$$2\pi \int_{0}^{1} (1-x)\sqrt{x} \ dx$$

(C)
$$2\pi \int_{0}^{1} x \left(1 - \sqrt{x}\right) dx$$

(D)
$$2\pi \int_{0}^{1} (1-x)(1-\sqrt{x}) dx$$

8 The equation $x^3-4x-2=0$ has roots α , β and γ . Which of the following equations has roots $-\frac{1}{\alpha}$, $-\frac{1}{\beta}$ and $-\frac{1}{\gamma}$?

- $2x^3-4x^2-1=0$
- $2x^3 + 4x^2 1 = 0$
- (C) $2x^3 4x^2 + 1 = 0$
- (D) $2x^3 + 4x^2 + 1 = 0$

Student name /	number	
Prince name 1	TITITIOGI	

Marks

1

1

In the diagram a particle of mass m, attached to a string of length l, is suspended from a point O above a smooth, horizontal table with the string inclined at angle θ to the vertical. The particle moves on the table with constant angular velocity ω in a horizontal circle of radius r. The forces acting on the particle are the force due to gravity, the normal reaction N and the tension T in the string. Which of the following is an expression for T?

- $ml\omega^2$ (A)
- $(mg-N)\cos\theta$

10 Which of the following is the value of $\lim_{n\to\infty} \frac{{}^{n}C_{1} \cdot {}^{n}C_{2}}{{}^{n}C_{2}}$?

- (A)
- (B)
- (C)
- (D)

90 Marks **Attempt Questions 11-16** Ouestion 11 (15 marks) (ii) zw

Marks

2

2

2

3

Section II

Allow about 2 hours and 45 minutes for this section.

Answer the questions on your own paper, or in writing booklets if provided. Start each question on a new page.

All necessary working should be shown in every question.

Use a SEPARATE writing booklet

Student name / number

- If z=1+3i and w=2-i find in the form a+ib (for real a and b) the values of
- - 1
- (b)(i) Express $-1+\sqrt{3}i$ in modulus/argument form.
 - (ii) Hence find the value of $z^8 16z^4$ in the form a + ib where a and b are real.
- In the Argand diagram OABC is a square, where O, A, B, C are in anti-clockwise cyclic order. The complex number z is represented by the vector \overrightarrow{OA} .
- (i) Find in terms of z the complex numbers represented by the vectors \overrightarrow{OC} and \overrightarrow{OB} .
- (ii) If the vector \overrightarrow{OB} represents the complex number 4+2i, find z in the form a+ibwhere a and b are real.
- The equation $x^4 2x^2 5x + 3 = 0$ has roots α , β , γ and δ .
- (i) Find the values of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ and $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.
- (ii) State the number of real and non-real roots of the equation and give reasons for your answer.

Student name / number

Marks

Question 12 (15 marks)

Use a SEPARATE writing booklet

(a) By completing the square find
$$\int \frac{1}{\sqrt{3-(x^2-2x)}} dx$$
.

(b) Find
$$\int \frac{e^{2x}}{e^x + 1} dx$$
.

(c) Find
$$\int \tan^{-1} x \ dx$$
.

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate
$$\int_0^{\frac{\pi}{2}} \frac{1}{5 + 4\sin x + 3\cos x} dx$$
.

(e)

The diagram shows a two-dimensional view of a trophy comprising a metal sphere of radius R cm and with centre O, mounted on a base (shaded) so that the sphere fits snugly in the indentation in the base. (The three-dimensional trophy is the rotation of this two-dimensional view about the vertical through O). In the diagram, OAB and OCD are straight lines, each making an angle $\frac{\pi}{3}$ radians with the vertical

- (i) By taking annular, horizontal cross sections of thickness δy at a distance y cm below O, show that the volume V cm³ of the solid base of the trophy (shaded) is given by $V = \pi \left((4y^2 - R^2) dy \right)$.
- (ii) Hence find the value of V.

3

Student name / number

Marks

Question 13 (15 marks)

Use a SEPARATE writing booklet

The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0, cuts the x axis at M and N. The ellipse has eccentricity e and S(ae, 0) is one focus of the ellipse. The focal chord PSQ is perpendicular to the x axis. Show that $\frac{1}{MS} + \frac{1}{NS} = \frac{4}{PO}$

(b)

In the diagram $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$, where q > p > 0, are two points on the rectangular hyperbola $xy = c^2$. M is the midpoint of PQ. PQ produced cuts the x axis at X. OM cuts the rectangular hyperbola at T.

- (i) Show that gradient MX = gradient OM and hence show that MX = OM.
- (ii) Show that the tangent to the rectangular hyperbola at T is parallel to the chord PQ.

(c)

The diagram shows the curve y = f(x) where $f(x) = \frac{2e^x - 4}{e^x + 1}$. On separate diagrams sketch the following curves showing clearly the intercepts on the axes and the equations of any asymptotes.

- (i) y = f(x).....
- (ii) y = f(|x|).
- (iv) $y = f^{-1}(x)$

3

2

Student name / number _____

Marks

3

3

2

Question 14 (15 marks)

Use a SEPARATE writing booklet

- (a) Express $\frac{x^2+3x+4}{(x-2)(x^2+3)}$ in the form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$ for some constants A, B and C.
- (b) A sequence of numbers is given by $T_1 = 6$, $T_2 = 27$ and $T_n = 6T_{n-1} 9T_{n-2}$ for $n \ge 3$.

 Use Mathematical Induction to show that $T_n = (n+1)3^n$ for $n \ge 1$.
- (c) A particle of mass m kg is fired vertically upwards with speed 200 ms⁻¹ in a medium where the resistance is $\frac{1}{10}m\nu$ Newtons when the speed is ν ms⁻¹. Take g=10 ms⁻².
- (i) For the upward journey, if x metres is the vertical displacement upwards from the point of projection, using the equation of motion $\ddot{x} = -\frac{1}{10}(100 + \nu)$, show that the maximum height attained above the point of projection is H metres where $H = 1000(2 \ln 3)$.
- (ii) Show that the speed ν of the particle on return to its point of projection satisfies $\frac{\nu}{100} + \ln(1 \frac{\nu}{100}) + (2 \ln 3) = 0$.
- (iii) Show that $\lambda + \ln(1-\lambda) + (2-\ln 3) = 0$ has a root between 0.8 and 0.9, and applying Newton's method once with 0.82 as a first approximation, find a second approximation for λ .
- (iv) What percentage of its terminal velocity has the particle attained on return to its point of projection? Explain your answer.

Marks

Question 15 (15 marks)

Use a SEPARATE writing booklet

Student name / number

(a) Consider
$$I_n = \int_0^1 \frac{x^n}{1+x^2} dx$$
 for $n = 0, 1, 2, ...$

(i) Show that
$$I_n = \frac{1}{n-1} - I_{n-2}$$
 for $n = 2, 3, 4, ...$

(ii) Hence find the value of
$$I_{\perp}$$
.

(b)(i) If
$$a > 0$$
 is a real number, show that $a + \frac{1}{a} \ge 2$.

(ii) Hence show that if a>0, b>0, c>0 are real numbers, then

$$(\alpha) \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6.$$

$$(\beta) \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$
.

(c)(i) Show that
$$\sin(2k+1)\theta - \sin(2k-1)\dot{\theta} = 2\sin\theta\cos 2k\theta$$
.

(ii) Hence show that
$$\sin \theta \sum_{k=1}^{n} \cos 2k\theta = \sin n\theta \cos(n+1)\theta$$
.

(iii) Hence find the value of
$$\sum_{k=1}^{10} \sin^2 \left(\frac{k\pi}{10} \right)$$
.

Student name / number _____

Marks

Question 16 (15 marks)

Use a SEPARATE writing booklet

(a)

In the diagram, triangle ABC is inscribed in a circle of radius R.

(i) By constructing the diameter through B, or otherwise, show that $R = \frac{a}{2\sin A}$.

(ii) Show that $\frac{Area \triangle ABC}{Area \ circle \ ABC} = \frac{2}{\pi} \sin A \sin B \sin C$.

(iii) If the sizes of angles A, B, C are in radians and satisfy $A \ge B \ge C$, $\alpha = A - C$ and the function $f(\alpha)$ is defined by $f(\alpha) = \frac{2}{\pi} \sin A \sin B \sin C$, show that $f'(\alpha) \le 0$ throughout the domain of f.

(iv) Hence show that $\frac{Area \ \Delta ABC}{Area \ circle \ ABC}$ has a maximum value when ΔABC is equilateral and state this maximum value.

(b)(i) For real numbers x_1 , x_2 , x_3 ,..., if $S_n = \sum_{k=1}^n x_k$ show that $\sum_{k=1}^n x_k^2 = \frac{1}{n} S_n^2 + \sum_{k=1}^n \left(x_k - \frac{1}{n} S_n \right)^2.$

(ii) Hence show that $\sum_{k=0}^{n} {\binom{n}{C_k}}^2 > \frac{2^{2n}}{n+1}$ for n=2,3,4,...

(iii) Use the identity $\{(1+x)^n\}^2 \equiv (1+x)^{2n}$ to show $\sum_{k=0}^n {n \choose k}^2 = \frac{(2n)!}{(n!)^2}$.

(iv) Hence or otherwise show that $0 < \ln 2 - \ln 3 + \ln 4 - ... + \ln(2n) < \ln(n+1)$ for n = 2, 3, 4, ... 2

Independent Trial HSC 2014

Mathematics Extension 2 Marking Guidelines

	rnachena	tent 111ai H3C 2014 Mathematics Extension 2 Marking Outden	103
Section 1		tions 1-10 (1 mark each)	
Question 1.	Answer B	$ \begin{vmatrix} a=1 \\ r=2\cos^2\theta \end{vmatrix} \qquad \frac{a}{1-r} = \frac{1}{1-(1+\cos 2\theta)} = \frac{1}{-\cos 2\theta} = -\sec 2\theta $	Outcomes H5
2.	С	$f(x) = \sin^{-1} x + \tan^{-1} x \text{ is an increasing function with domain } -1 \le x \le 1.$ $\therefore \sin^{-1}(-1) + \tan^{-1}(-1) \le y \le \sin^{-1} 1 + \tan^{-1} 1$ $(-\frac{\pi}{2}) + (-\frac{\pi}{4}) \le y \le \frac{\pi}{2} + \frac{\pi}{4}$ $\therefore -\frac{3\pi}{4} \le y \le \frac{3\pi}{4}$	HE4
3.	A	$e^{x} + e^{y} = 1$ $e^{x} + e^{y} \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = \frac{-e^{x}}{e^{y}} = -e^{x-y}$	E6
4.	В	$ z-6 = 2 z $ $(x-6)^2 + y^2 = 4(x^2 + y^2)$ $(x+2)^2 + y^2 = 16$ $36 = 3x^2 + 12x + 3y^2$	Е3
5.	С	$ \begin{vmatrix} e = \sqrt{2} \\ a = \sqrt{k} \end{vmatrix} \qquad S(\sqrt{2k}, 0) \qquad \therefore \sqrt{2k} = 4 \qquad \therefore k = 8 $	E4
6.	D	$\int xe^{-x} dx = x(-e^{-x}) - \int (-e^{-x}) dx = -xe^{-x} - e^{-x} + c$	E8
7.	D	$\delta V = \pi \left(R^2 - r^2 \right) h$ $= \pi \left(R + r \right) \left(R - r \right) h$ $\delta V = 2\pi \left(1 - x \right) \left(1 - \sqrt{x} \right) \delta x$ (ignoring terms in $(\delta x)^2$) $\therefore V = \lim_{\delta x \to 0} \sum_{x=0}^{x=1} 2\pi \left(1 - x \right) \left(1 - \sqrt{x} \right) \delta x = 2\pi \int_{0}^{1} \left(1 - x \right) \left(1 - \sqrt{x} \right) dx$	E7
8.	С	$-\frac{1}{\alpha}$, $-\frac{1}{\beta}$ and $-\frac{1}{\gamma}$ satisfy $\left(-\frac{1}{x}\right)^3 - 4\left(-\frac{1}{x}\right) - 2 = 0$ Rearranging gives $2x^3 - 4x^2 + 1 = 0$	E4.
9.	A	Resolving forces horizontally and applying Newton's 2^{nd} law gives $T \sin \theta = mr\omega^2$. Then $r = l\sin \theta$ gives $T = ml\omega^2$	E5
10.	D	$\lim_{n \to \infty} \frac{{}^{n}C_{1} \cdot {}^{n}C_{2}}{{}^{n}C_{2}} = \lim_{n \to \infty} \left\{ n \cdot \frac{n(n-1)}{2!} \cdot \frac{3!}{n(n-1)(n-2)} \right\} = 3 \lim_{n \to \infty} \frac{1}{1 - \frac{2}{n}} = 3$	нез

Section II

Question 11

a. Outcomes assessed: E3

Marking Guidelines	
Criteria	Marks
i • find the difference	1
ii • find the product	1

Answer

i.
$$\overline{z} - w = (1-3i) - (2-i) = -1-2i$$

ii.
$$zw = (1+3i)(2-i) = 5+5i$$

b. Outcomes assessed: E3

Marking Guidelines

	marking Guidennes	
	Criteria	Marks
i • find the modulus		1
• find the argument		1
ii • use deMoivre's theorem	•	1
 simplify into required form 		1

Answer

i.
$$-1 + \sqrt{3} i = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

ii.
$$z^{8} = 2^{8} \left(\cos \frac{16\pi}{3} + i \sin \frac{16\pi}{3} \right) = 2^{8} \left(\cos \frac{-2\pi}{3} + i \sin \frac{-2\pi}{3} \right) = 2^{7} \left(-1 - \sqrt{3} \ i \right)$$
$$16z^{4} = 16 \cdot 2^{4} \left(\cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3} \right) = 2^{8} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) = 2^{7} \left(-1 + \sqrt{3} \ i \right)$$
$$z^{8} - 16z^{4} = -2^{8} \sqrt{3} \ i = -256\sqrt{3} \ i$$

c. Outcomes assessed: E3

Marking Guidelines

TIXALAM CAMOUNOS	
Criteria	Marks
i • find z represented by vector OC	1
• find z represented by vector OB	1
ii • write an expression for z using complex numbers in form $a+ib$	1
• evaluate z	1

Answer

i. \overrightarrow{OC} represents iz (anticlockwise rotation of \overrightarrow{OA} by $\frac{\pi}{2}$) \overrightarrow{OB} is the vector sum of \overrightarrow{OA} and \overrightarrow{OC} .

Hence \overrightarrow{OB} represents z+iz=(1+i)z

ii.
$$4+2i = (1+i)z$$

 $(4+2i)(1-i) = 2z$
 $6-2i = 2z$
 $z = 3-i$

Q11 (cont)

d. Outcomes assessed: E4

Marking Guidelines	
Criteria	Marks
i • use the relationships between roots and coefficients to evaluate the sum of squares	1
• evaluate the sum of fourth powers by writing it in terms of sums of lower powers	1
ii • use the negative value of the sum of the fourth powers to deduce at least one root is non-real	1
• deduce that there are either 4 non-real roots, or 2 real and 2 non-real roots	1
• show that one root is real by establishing the change of sign of the polynomial function	· 1

Answer

i.
$$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} = (\alpha + \beta + \gamma + \delta)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\delta + \delta\alpha) = 0 - 2(-2) = 4$$

Each of $\alpha, \beta, \gamma, \delta$ satisfies $x^{4} - 2x^{2} - 5x + 3 = 0$. Hence
$$(\alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4}) - 2(\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) - 5(\alpha + \beta + \gamma + \delta) + (3 + 3 + 3) = 0$$
$$(\alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4}) - 2 \times 4 - 5 \times 0 + 12 = 0$$
$$\therefore \alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4} = -4$$

ii. At least one of α , β , γ , δ must be non-real (since the fourth powers are not all non-negative). However the non-real roots come in complex conjugate pairs (since the coefficients are real). Hence either there are 4 non-real roots, or there are 2 non-real and 2 real roots. Considering the continuous polynomial function $P(x) = x^4 - 2x^2 - 5x + 3$, P(0) = 3 > 0 and P(1) = -3 < 0 and hence there is a real root of P(x) = 0 lying between 0 and 1. Hence the equation must have 2 real and 2 non-real roots.

Ouestion 12

a. Outcomes assessed: E8

	Marking Guidelines	
·	Criteria	Marks
• complete the square		1
write the primitive function		1 1

Answer

$$\int \frac{1}{\sqrt{3 - (x^2 - 2x)}} dx = \int \frac{1}{\sqrt{4 - (x - 1)^2}} dx = \sin^{-1} \left(\frac{x - 1}{2}\right) + c$$

b. Outcomes assessed: E8

Marking Guidelines		
Criteria Criteria	Marks	
• rearrange integrand into appropriate form	1	
write the primitive	1	

3

Answer

$$\int \frac{e^{2x}}{e^x + 1} dx = \int \frac{e^x (e^x + 1) - e^x}{e^x + 1} dx = \int \left\{ e^x - \frac{e^x}{e^x + 1} \right\} dx = e^x - \ln(e^x + 1) + c$$

O12 (cont)

c. Outcomes assessed: E8

Marking Guidelines	
. Criteria	Marks
• apply integration by parts	1
complete the primitive function	1

Answer

$$\int 1 \cdot \tan^{-1} x \ dx = x \tan^{-1} x - \int \frac{x}{1+x^2} dx = x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + c$$

d. Outcomes assessed: E8

Marking Guidelines	
Criteria	Marks
• express the integrand in terms of t	1
• write the definite integral in terms of t	1
• find the primitive function	1
• evaluate using t limits	1 1

Answer

$t = \tan \frac{x}{2}$	$5+4\sin x+3\cos x$	(* 1
$dt = \frac{1}{2}\sec^2\frac{x}{2} dx$	$=\frac{5(1+t^2)+8t+3(1-t^2)}{1+3(1-t^2)}$	$\int_0^{\infty} \frac{1}{5 + 4\sin x + 3\cos x} dx$
	$1+t^2$	$= \int_0^1 \frac{1+t^2}{2(t+2)^2} \cdot \frac{2}{1+t^2} dt$
$dx = \frac{2}{1+t^2}dt$	$=\frac{2(t^2+4t+4)}{1+t^2}$	$= \int_0^{\infty} \frac{1}{2(t+2)^2} \cdot \frac{1}{1+t^2} dt$
	$=\frac{2(t+2)^2}{2(t+2)^2}$	[1]
$x=0 \implies t=0$	$=\frac{2(t+2)}{1+t^2}$	$=-\left[\frac{t+2}{t+2}\right]_0$
$x = \frac{\pi}{2} \implies t = 1$		= 1

e. Outcomes assessed: E7, E8

Marking Guidelines	
Criteria	Marks
i • find either inner or outer radius of the annular cross section	1
• find other radius of the annulus and then its area	1
• express V as a limiting sum of slice volumes and hence as a definite integral	1
ii • find the primitive function	1 .
• evaluate in terms of R.	1

Answer

i. Cross section y below O is an annulus with inner radius t and outer radius T, where $t^2 = R^2 - y^2$ and $T = y \tan \frac{\pi}{3} = y \sqrt{3}$ (since vertical through O makes angle $\frac{\pi}{3}$ with OD)

Hence area of cross section is $\pi \left\{ 3y^2 - \left(R^2 - y^2\right) \right\}$

$$\therefore V = \lim_{\delta y \to 0} \sum_{y=1}^{R} \pi \left(4y^2 - R^2 \right) \delta y = \pi \int_{\frac{1}{2}R}^{R} \left(4y^2 - R^2 \right) dy$$

ii.
$$V = \pi \left[\frac{4}{3} y^3 - R^2 y \right]_{\frac{1}{2}R}^R = \pi \left\{ \frac{4}{3} \left(R^3 - \left(\frac{1}{2} R \right)^3 \right) - R^2 \left(R - \frac{1}{2} R \right) \right\}$$

$$\therefore V = \pi R^3 \left(\frac{4}{3} \times \frac{7}{8} - \frac{1}{2} \right) = \frac{2}{3} \pi R^3$$

Question 13

a. Outcomes assessed: E4

	Marking	g Gui	delines
--	---------	-------	---------

Marking Guidentes	
Criteria	Marks
• write expressions for MS, NS in terms of a and e	1
• find PS in terms of a and e	1
• find PQ in terms of a and e	1 1
• find the sum of the reciprocals of MS and NS and rearrange to obtain result	1

Answer

$$\frac{1}{MS} + \frac{1}{NS} = \frac{1}{a(1-e)} + \frac{1}{a(1+e)} = \frac{(1+e) + (1-e)}{a(1-e^2)} = \frac{2}{a(1-e^2)}$$

Using the locus definition of the ellipse and the directrix $x = \frac{a}{e}$,

b. Outcomes assessed: E4

Marking Guidelines	
Criteria	Marks
i • find gradient of PQ and hence gradient of MX	1
• find coordinates of M and gradient of OM	1
 deduce MX and OM make equal acute angles with the x-axis so that ΔMOX is isosceles 	1
ii • find the parameter at T in terms of p and q	1
- compare the gradient of the tangent at T with the gradient of PQ	1

Answer

i.
$$gradient\ MX = Gradient\ PQ = \frac{c(\frac{1}{p} - \frac{1}{q})}{c(p-q)} = -\frac{1}{pq}$$
 . M has coordinates $\left(\frac{c(p+q)}{2}, \frac{c(p+q)}{2pq}\right)$ $gradient\ OM = \frac{c(p+q)}{2pq} + \frac{c(p+q)}{2} = \frac{1}{pq}$ $\therefore gradient\ MX = -gradient\ OM$

If MX and OM make angles α and β respectively with the positive x axis, then $\tan \alpha = -\tan \beta$. Hence $\beta = 180^{\circ} - \alpha$ and in ΔMOX , $\angle MOX = \angle MXO = \beta$. Then ΔMOX is isosceles with MX = OM.

ii. Let T have coordinates $\left(ct,\frac{c}{t}\right)$. Then $\dot{m}_{or} = \frac{c}{t} + ct = \frac{1}{t^2}$. But $m_{or} = m_{OM}$. $\therefore t^2 = pq$.

At T, $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt} = \frac{-c}{t^2} + c = -\frac{1}{t^2} = -\frac{1}{pq} = m_{PQ}$. Hence the tangent at T is parallel to PQ.

Q13 (cont)

c. Outcomes assessed: E6

 Marking Guidelines

 Criteria
 Marks

 i • reflect section of graph below x axis in x axis
 1

 ii • reflect section of graph to right of y axis in y axis to obtain graph for x < 0 1

 iii • sketch upper branch with asymptotes
 1

 • sketch lower branch with asymptotes and y intercept
 1

 iv • correct domain, shape and vertical asymptotes
 1

 • correct intercepts on axes
 1

ii.

i٧.

Answer

i.

iii.

Ouestion 14

a. Outcomes assessed: E4

Markin	ng Guidelines
Cx	iteria Marks
• find A	Ī
• find B	1
• find C	1

Answer

$$x^{2} + 3x + 4 = A(x^{2} + 3) + (Bx + C)(x - 2)$$

$$x = 2 \implies 14 = 7A \qquad \therefore A = 2$$

$$x = 0 \implies 4 = 3A - 2C \qquad \therefore C = 1$$

$$Equate coeff. of x^{2}: 1 = A + B \qquad \therefore B = -1$$

$$x^{2} + 3x + 4 = 2 \qquad x^{2} + 3x + 4 = 2$$

O14 (cont)

b. Outcomes assessed: HE2

Markin	g	Gu	id	elir	ıe

Marking Guidennes	
Criteria	Marks
define a sequence of statements and show the first two are true	1
• use the recurrence relation to write T_{k+1} in terms of values of T_k , T_{k-1} given $S(n)$ true, $n \le k$	1
• rearrange to establish conditional truth of $S(k+1)$ and complete the induction process	1

Answer

Let S(n), n=1,2,3,... be the sequence of statements defined by S(n): $T_n=(n+1)3^n$.

Consider
$$S(1)$$
 and $S(2)$: $T_1 = 6 = (1+1) \times 3^1$

$$T_1 = 6 = (1+1) \times 3$$

$$\therefore S(1)$$
 is true

$$T_2 = 27 = (2+1) \times 3^2$$

$$\therefore S(2)$$
 is true

If S(n) is true for $n \le k$ (where $k \ge 2$): $T_* = (n+1)3^n$, n = 1, 2, 3, ..., k

$$T = (n+1)3^n$$
, $n=1,2,3,...,k$

Consider S(k+1), $k \ge 2$:

$$T_{k+1} = 6T_k - 9T_{k-1}$$

$$= 6(k+1) 3^k - 9k . 3^{k-1}$$
 if $S(n)$ is true for $n \le k$, using *
$$= \{2(k+1) - k\} 3^{k+1}$$

$$= \{(k+1) + 1\} 3^{k+1}$$

Hence if S(n) is true for $n \le k$ (where $k \ge 2$) then S(k+1) is true. But S(n) is true for $n \le 2$. Hence S(3) is true, then S(n) true for $n \le 3 \Rightarrow S(4)$ is true and so on. Hence by Mathematical Induction, $T_n = (n+1) 3^n$ for all integers $n \ge 1$.

c. Outcomes assessed: E5

Marking Guidelines

Criteria	Marks
	1
i • find $\frac{dx}{dx}$ in terms of v	
av	1 1
• use initial conditions to find x in terms of v	· 1
• find expression for H by finding x when v is zero	1
ii • find equation of motion for downward journey	1 1
• find distance fallen in terms of v	1
• use expression for maximum height to establish required equation	1
iii • note continuity and establish change of sign	1
apply Newton's method	1
iv • find terminal velocity and use value of λ to obtain required percentage	

Answer

$$\ddot{x} = -\frac{1}{10} (100 + v)$$

$$v \frac{dv}{dx} = -\frac{1}{10} (100 + v)$$

$$-\frac{1}{10} \frac{dx}{dv} = \frac{v}{100 + v}$$

$$-\frac{1}{10} \frac{dx}{dv} = 1 - \frac{100}{100 + v}$$

$$t = 0$$

$$x = 0; v = 200 \begin{cases} -\frac{1}{10}x = v - 100\ln(100 + v) + c \\ 0 = 200 - 100\ln300 + c \\ -\frac{1}{10}x = (200 - v) - 100\ln(\frac{300}{100 + v}) & \cdots \end{cases}$$

$$x = H, v = 0 \Rightarrow \frac{1}{10}H = 200 - 100\ln3$$

$$\therefore H = 1000 (2 - \ln3)$$

O14 c (cont)

ii. For the downward journey, let x be the distance fallen below the position of maximum height, with initial conditions x = 0, v = 0.

$$m\ddot{x} = mg - \frac{1}{10}mv$$

$$\ddot{x} = \frac{1}{10}(100 - v)$$

$$v = \frac{dv}{dx} = \frac{1}{10}(100 - v)$$

$$v = \frac{dv}{dx} = \frac{1}{10}(100 - v)$$

$$-\frac{1}{10}x = v + 100\ln(100 - v) + c$$

$$\frac{1}{10}\frac{dx}{dv} = \frac{v}{100 - v}$$

$$t = 0, x = 0, v = 0 \Rightarrow 0 = 100\ln100 + c$$

$$-\frac{1}{10}x = v + 100\ln(\frac{100 - v}{100})$$

$$-\frac{1}{10}\frac{dx}{dy} = 1 - \frac{100}{100 - v}$$

$$x = H \Rightarrow -100(2 - \ln 3) = v + 100\ln(1 - \frac{v}{100})$$

$$\frac{v}{100} + \ln(1 - \frac{v}{100}) + (2 - \ln 3) = 0$$

Forces on particle

mg

iii. Let
$$f(\lambda) = \lambda + \ln(1 - \lambda) + (2 - \ln 3)$$
.

$$f'(\lambda) = 1 - \frac{1}{1 - \lambda} = \frac{-\lambda}{1 - \lambda}$$

Then $f(\lambda)$ is continuous for $0 < \lambda < 1$ and $f(0.8) \approx 0.09 > 0$, $f(0.9) \approx -0.50 < 0$ Hence $f(\lambda) = 0$ for some $0.8 < \lambda < 0.9$.

Using
$$\lambda_0 = 0.82$$
, $\lambda_1 = 0.82 - \frac{0.82 + \ln(1 - 0.82) + 2 - \ln 3}{\left(\frac{-0.82}{1 - 0.92}\right)} = 0.82$

iv. Since Newton's method returned the same approximate root to 2 decimal places, $\frac{v}{100} \approx 0.82$ gives

the speed ν on return to projection point as 82 ms⁻¹ (to nearest 1).

For the downward journey, $\ddot{x} \to 0$ as $v \to 100$. Hence the terminal velocity is 100 ms^{-1} . Hence particle has attained 82% of its terminal velocity on return to its point of projection.

Ouestion 15

a. Outcomes assessed: E8

Marking Guidelines

TIME WING CHICOMACS	
Criteria	Marks
i • rearrange integrand	1
• evaluate definite integral to obtain reduction formula	1
ii • evaluate Io) 1
• reduce and evaluate I4	1

Answer

i.
$$\int_{0}^{1} \frac{x^{n}}{1+x^{2}} dx = \int_{0}^{1} \frac{\left\{ \left(1+x^{2}\right)-1\right\} x^{n-2}}{1+x^{2}} dx , \quad n=2,3,4,...$$
ii.
$$I_{0} = \int_{0}^{1} \frac{1}{1+x^{2}} dx = \left[\tan^{-1} x \right]_{0}^{1} = \frac{\pi}{4}$$

$$I_{n} = \int_{0}^{1} x^{n-2} d\tilde{x} = I_{n-2}$$

$$= \frac{1}{n-1} \left[x^{n-1} \right]_{0}^{1} - I_{n-2}$$

$$= \frac{1}{n-1} I_{n-2}$$

$$= \frac{1}{n-1} I_{n-2}$$

$$= \frac{\pi}{4} - \frac{2}{3}$$

Q15(cont)

b. Outcomes assessed: PE3

Marking Guidelines

Warking Guidennes	
Criteria	Marks
i show the sum of a positive real number and its reciprocal is at least 2	1
ii α - rearrange given expression into such sums	1
 apply result from (i) to establish required inequality 	1
β • make appropriate replacements for a, b, c	1
rearrange to establish required inequality	1

Answei

i.
$$\left(a + \frac{1}{a}\right)^2 = \left(a - \frac{1}{a}\right)^2 + 4 \ge 4$$
, since $\left(a - \frac{1}{a}\right)^2 \ge 0$ for real $a \ne 0$
 $\therefore a + \frac{1}{a} \ge 2$ for real $a > 0$

ii(
$$\alpha$$
). $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} = \left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right) + \left(\frac{c}{a} + \frac{a}{c}\right)$, where each of $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ is real and positive.

$$\geq 2 + 2 + 2 \qquad \text{using (i)}$$

$$\therefore \frac{b+c}{b} + \frac{c+a}{b} + \frac{a+b}{c} \geq 6$$

ii
$$(\beta)$$
. Replacing $a \to b + c$, $b \to c + a$, $c \to a + b$:
$$\frac{(c+a) + (a+b)}{b+c} + \frac{(a+b) + (b+c)}{c+a} + \frac{(b+c) + (c+a)}{a+b} \ge 6$$

$$1 + \frac{2a}{b+c} + 1 + \frac{2b}{c+a} + 1 + \frac{2c}{a+b} \ge 6$$

$$2\left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right) \ge 3$$

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

c. Outcomes assessed: H5

Marking Guidelines

Marking Outdennes	
Criteria	Marks
i • expand using compound angle trigonometric identities then simplify	1
ii • use identity from (i) to simplify sum	1
• use trigonometric identity converting difference to product	1
simplify to obtain required result	1
iii • use appropriate trigonometric identity	1 1
• use result from (ii) to evaluate sum	1

Answer

- i. $\sin(2k+1)\theta = \sin 2k\theta \cos \theta + \cos 2k\theta \sin \theta$ and $\sin(2k-1)\theta = \sin 2k\theta \cos \theta \cos 2k\theta \sin \theta$ $\sin(2k+1)\theta - \sin(2k-1)\theta = 2\sin\theta\cos 2k\theta$.
- ii. $2\sin\theta\sum_{k=1}^{n}\cos 2k\theta = \sum_{k=1}^{n}\left\{\sin(2k+1)\theta \sin(2k-1)\theta\right\} = \sin(2n+1)\theta \sin\theta$

Using $\sin A - \sin B = 2\sin \frac{A-B}{2}\cos \frac{A+B}{2}$, $A = 2(n+1)\theta$, $B = \theta$: $\sin \theta \sum_{k=1}^{n} \cos 2k\theta = \sin n\theta \cos(n+1)\theta$

iii.
$$\sum_{k=1}^{10} \sin^2 \frac{k\pi}{10} = \frac{1}{2} \sum_{k=1}^{10} \left(1 - \cos \frac{2k\pi}{10} \right) = \frac{1}{2} \left\{ 10 - \frac{\sin \frac{10\pi}{10} \cos \frac{11\pi}{10}}{\sin \frac{\pi}{10}} \right\} = 5$$

Ouestion 16

a. Outcomes assessed: P5, H5, PE3

Marking Guidelines	
Criteria	Marks
i • provide a sequence of deductions leading to required result	1
• justify deductions using geometric properties and trigonometry	1
ii • use the sine rule and (i) to obtain result	1
iii • write f explicitly as function of α for fixed A and find derivative	1
• show derivative is negative throughout domain of f	1
iv • deduce $f(\alpha)$ takes its maximum value for $\alpha = 0$ and hence when $\triangle ABC$ is equilateral	1
find this maximum value	1

Answer

i. Construct diameter BD through centre O and construct DC. $\angle BDC = \angle A$ (\angle 's in same segment subtended by chord BC are equal) $\angle BCD = \frac{\pi}{2}$ (\angle in semi-circle is a right angle)

In
$$\triangle BCD$$
, $\sin \angle BDC = \frac{a}{BD} = \frac{a}{2R}$. $\therefore R = \frac{a}{2\sin A}$

ii.
$$\frac{Area \ \triangle ABC}{Area \ circle \ ABC} = \frac{\frac{1}{2}bc\sin A}{\pi R^2} = \frac{bc\sin A(2\sin A)^2}{2\pi a^2} = \frac{2}{\pi}abc\left(\frac{\sin A}{a}\right)^3$$

Using the sine rule in $\triangle ABC$, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

$$\frac{Area \; \triangle ABC}{Area \; circle \; ABC} = \frac{2}{\pi} \; abc. \; \frac{\sin A}{a}. \frac{\sin B}{b}. \frac{\sin C}{c} = \frac{2}{\pi} \sin A \sin B \sin C$$

iii.
$$C = A - \alpha$$
, $B = \pi - (2A - \alpha)$ (since \angle sum of $\triangle ABC$ is π)

 $f(\alpha) = \frac{2}{\pi} \sin A \sin B \sin C = \frac{2}{\pi} \sin A \sin(2A - \alpha) \sin(A - \alpha) , \text{ where } 0 \le \alpha < A$ Using $\cos(p-q) - \cos(p+q) = 2\sin p \sin q$ with $p = 2A - \alpha$, $q = A - \alpha$:

$$f(\alpha) = \frac{1}{\pi} \sin A \left\{ \cos A - \cos(3A - 2\alpha) \right\}$$

$$f'(\alpha) = -\frac{2}{\pi} \sin A \sin(3A - 2\alpha)$$

But $3A-2\alpha = A+(A-\alpha)+(A-\alpha)=A+C+C \le A+B+C=\pi$ (since $A \ge B \ge C$)

Hence $\sin(3A-2\alpha) \ge 0$ and $f'(\alpha) \le 0$ for $0 \le \alpha < A$.

iv. $f(\alpha)$ is a decreasing function throughout its domain $0 \le \alpha < A$, hence it takes its maximum value when $\alpha = 0$ and C = A. But then $A \ge B \ge C \Rightarrow A = B = C = \frac{\pi}{4}$ and $\triangle ABC$ is equilateral.

The maximum value of
$$\frac{Area \triangle ABC}{Area \ circle \ ABC}$$
 is $f(0) = \frac{2}{\pi} \left(\sin \frac{\pi}{3}\right)^3 = \frac{3\sqrt{3}}{4\pi}$.

Q16 (cont)

b. Outcomes assessed: PE3, HE3

Marking Guidelines

marking distributes	
Criteria	Marks
i • expand the square and break up into separate sums	1
manipulate sigma notation to obtain required result	1
ii • apply result to the sequence of n+1 binomial coefficients	1
• evaluate the sum of these binomial coefficients	1
• explain why strict inequality holds	1
iii • equate coefficients of x" on both sides of identity using properties of binomial coefficients	1
iv • simplify factorial quotient then apply (ii) and (iii) to obtain appropriate inequality	1
take logarithms to complete proof	1

Answer

i.

$$\begin{split} \sum_{k=1}^{n} \left(x_{k} - \frac{1}{n} S_{n} \right)^{2} &= \sum_{k=1}^{n} \left\{ x_{k}^{2} - 2 \left(\frac{1}{n} S_{n} \right) x_{k} + \left(\frac{1}{n} S_{n} \right)^{2} \right\} \\ &= \sum_{k=1}^{n} x_{k}^{2} - 2 \left(\frac{1}{n} S_{n} \right) \sum_{k=1}^{n} x_{k} + \left(\frac{1}{n} S_{n} \right)^{2} \sum_{k=1}^{n} 1 \\ &= \sum_{k=1}^{n} x_{k}^{2} - 2 \left(\frac{1}{n} S_{n} \right) S_{n} + n \left(\frac{1}{n} S_{n} \right)^{2} \\ &= \sum_{k=1}^{n} x_{k}^{2} - \frac{1}{n} S_{n}^{2} \\ &\sum_{k=1}^{n} x_{k}^{2} = \frac{1}{n} S_{n}^{2} + \sum_{k=1}^{n} \left(x_{k} - \frac{1}{n} S_{n} \right)^{2} \end{split}$$

ii.
$$x_{k+1} = {}^{n}C_{k}$$
, $k = 0, 1, 2, ..., n$. Then $(1+x)^{n} \equiv \sum_{k=0}^{n} {}^{n}C_{k}x^{k}$ gives $2^{n} = \sum_{k=0}^{n} {}^{n}C_{k}$. $\therefore S_{n+1} = 2^{n}$

From (i), for real x_k , $\sum_{k=1}^{n+1} x_k^2 \ge \frac{1}{n+1} S_{n+1}^2$, since each of $(x_k - \frac{1}{n+1} S_{n+1})^2 \ge 0$.

Since equality only holds for $x_1 = x_2 = ... = x_{n+1}$, $\sum_{k=0}^{n} {n \choose k}^2 > \frac{2^{2n}}{n+1}$ for n = 2, 3, 4, ...

iii. Considering the coefficient of x^n on both sides of the identity $\{(1+x)^n\}^2 \equiv (1+x)^{2n}$,

$$\sum_{k=0}^{n} {^{n}C_{k}}^{n}C_{n-k} = {^{2n}C_{n}} \quad \text{But} \quad {^{n}C_{n-k}} = {^{n}C_{k}} \quad \text{and} \quad {^{2n}C_{n}} = \frac{(2n)!}{n! \, n!} \quad \text{Hence} \quad \sum_{k=0}^{n} {n \choose k}^{2} = \frac{(2n)!}{(n!)^{2}} \; .$$

iv.
$$\frac{(2n)!}{(n!)^2} = \frac{2n(2n-1)\{2(n-1)\}(2n-3)\{2(n-2)\}\dots 2.1}{\{n(n-1)(n-2)\dots 1\}^2} = \frac{2^n(2n-1)(2n-3)\dots 3.1}{n(n-1)(n-2)\dots 1}$$

Using (ii) and (iii),
$$\frac{2^n(2n-1)(2n-3)...3.1}{n(n-1)(n-2)...1} > \frac{2^{2n}}{n+1}$$
, giving $\frac{1.3.5...(2n-3)(2n-1)}{2.4.6...[2(n-1)]\{2n\}} > \frac{1}{n+1}$

Taking logs of both sides gives $\ln 1 - \ln 2 + \ln 3 - \ln 4 + ... + \ln (2n-1) - \ln (2n) > -\ln (n+1)$

$$\ln 2 - \ln 3 + \ln 4 - ... + \ln(2n) < \ln(n+1)$$

Also $\ln 2 - \ln 3 + \ln 4 - ... + \ln(2n) = \ln 2 + \ln \frac{4}{3} + \ln \frac{6}{5} + ... + \ln \frac{2n}{2n-1} > 0$

$$\therefore 0 < \ln 2 - \ln 3 + \ln 4 - \dots + \ln(2n) < \ln(n+1)$$
 for $n = 2, 3, 4, \dots$