- 1. State whether the following functions are EVEN, ODD, or NEITHER. Show all working.
 - (a) $y = 2x^2$
- (b) $v = 2x^2$
- (c) $v = x^4 x^2 + 1$
- (d) $y = x x^3 + 1$

- (e) y = |x|
- (f) $y = \frac{x}{x^2 1}$
- (g) $y = (x+1)^2$

2. (a) Sketch the graph of $y = x^3$, $0 \le x \le 2$. Show the coordinates of the endpoints.

(b) The above function is part of an even function f(x), defined in the domain $-2 \le x \le 2$. Draw a sketch of y = f(x).

(c) Write a piecemeal description of the function f(x).

3. (a) Sketch the graphs of $y = \sin x$ and $y = \cos x$ on separate number planes, each in the domain $-180^{\circ} \le x \le 180^{\circ}$.

(b) Hence decide if the sine and cosine functions are odd, even or neither.

(c) Remembering that $\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$, write down the values of $\sin(-45^\circ)$ and $\cos(-45^\circ)$.

4. Show that if an odd function is defined for x = 0, then its graph must pass through the origin.

ANSWERS:

1. (a) even (e)

even

- (b) (f) odd odd
- (c) even
- (d) neither

2. (a)

- (b) (-2, 8)(2, 8)
- (g) neither $-2 \le x \le 0$ (c)

(b) sine is odd; cosine is even

(c) $\sin(-45^\circ) = -\frac{1}{\sqrt{2}}$; $\cos(-45^\circ) = \frac{1}{\sqrt{2}}$