2 UNIT TEST NUMBER 6

1996 Integration.

QUESTION 1. (10 marks)

Marks

Find: (a)

6

- (i) $\int (1-x^2)dx$ (ii) $\int \left(x + \frac{1}{x^2}\right)dx$
- (iii) $\int (x^{\frac{3}{2}} + x^{-\frac{1}{3}}) dx$.
- Show that $\int_0^4 \sqrt{2x+1} \, dx = 8\frac{2}{3}$. (b)

4

QUESTION 2. (14 marks)

- The region, enclosed by the parabola $y^2 = 4ax$ and the line x = a, is rotated (a) about the x-axis. Find the volume of the solid formed.
- 3

Consider the functions $y = 16 - x^2$ and y = 6x. (b)

- 11
- Find the coordinates of the points of intersection of the graphs of these (i) functions.
- Sketch, on the same axes, those parts of the curve $y = 16 x^2$ and the (ii) straight line y = 6x which lie in the first quadrant. Hence shade the region which satisfies $y \le 16 - x^2$, $y \ge 6x$, and $x \ge 0$.
- (iii) By considering the regions above and below the line y = 12 separately, find the volume generated when the region described in part (ii) is rotated completely about the y-axis. Give your answer to the nearest cubic unit.

QUESTION 3. (16 marks)

Marks

3

(a) The function f(x) describes a continuous curve, some of whose coordinates are given in the following table:

x	0	0.5	1	1.5	2
f(x)	1	1.2	1.6	2.2	3

Use this information to evaluate $\int_0^2 f(x) dx$ by applying Simpson's rule with five function values.

(b) Consider the function $y = x^2 - 6x + 5$.

10

- (i) Sketch the curve for the domain $0 \le x \le 7$, showing the intercepts on the axes, and the endpoints.
- (ii) Find the area between the x-axis and the section of the curve below the x-axis.
- (iii) Show that $\int_{1}^{7} (x^2 6x + 5) dx = 0$.
- (iv) Explain the result for part (iii) in terms of areas.
- (c) If $y^2 = x$, for $y \ge 0$, show by means of sketch graphs, and <u>not</u> by means of evaluating definite integrals, that $\int_0^1 x \, dy = 1 \int_0^1 y \, dx$.

2

2 UNIT TEST NUMBER 6

1996

SUGGESTED SOLUTIONS

QUESTION 1

(a) (i)
$$\int (1-x^2) dx = x - \frac{1}{3}x^3 + C$$

2 Note:
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$
.

(ii)
$$\int \left(x + \frac{1}{x^2}\right) dx = \int \left(x + x^{-2}\right) dx$$

$$= \frac{1}{2}x^2 - x^{-1} + C$$

$$x^{-1}+C$$

or
$$\frac{1}{2}x^2 - \frac{1}{x} + C$$

(iii)
$$\int \left(x^{\frac{3}{2}} + x^{-\frac{1}{3}}\right) dx = \frac{2}{5}x^{\frac{5}{2}} + \frac{3}{2}x^{\frac{2}{3}} + C$$

1

(b)
$$\int_0^4 \sqrt{2x+1} \, dx = \int_0^4 (2x+1)^{\frac{1}{2}} dx$$

1 Note:
$$\int (ax+b)^n dx = \frac{1}{n+1} \times \frac{1}{a} (ax+b)^{n+1} + C$$
.

$$= \left[\frac{2}{3}(2x+1)^{\frac{3}{2}} \times \frac{1}{2}\right]_0^4$$

$$= \left[\frac{1}{3}(2x+1)^{\frac{3}{2}}\right]_0^4$$

$$= \left[\frac{1}{3}(2\times4+1)^{\frac{1}{2}}\right] - \left[\frac{1}{3}(2\times0+1)^{\frac{1}{2}}\right]\mathbf{1}$$

$$= \left[\frac{1}{3} \times 9^{\frac{3}{2}}\right] - \left[\frac{1}{3} \times 1^{\frac{3}{2}}\right]$$

$$ote: x^{\frac{m}{n}} = (\sqrt{x})$$

$$\therefore 9^{\frac{3}{2}} = \left(\sqrt{9}\right)^3 = 3^3 = 27.$$

$$=9-\frac{1}{3}$$

$$=8\frac{2}{3}$$

OUESTION 2

(a)
$$V = \pi \int_0^{\pi} y^2 dx$$

$$=\pi\int_0^a 4ax\ dx$$

$$=\pi \left[2\alpha x^2\right]_0^a$$

$$=\pi \Big[2a\times a^2-0\Big]$$

1

1

Volume = $2\pi a^3$ units³.

Total = 3

(b) (i)
$$y = 16 - x^2$$
, $y = 6x$

$$16 - x^2 = 6x$$

1

$$x^2 + 6x - 16 = 0$$

$$(x+8)(x-2)=0$$

Substitute each value of x into one of the equations to find the y-coordinates of each point.

 $x = -8, \quad x = 2$

Total = 3

Points of intersection (-8, -48), (2, 12)

(iii) When region OAC is rotated about y-axis,

$$V = \pi \int_0^{12} x^2 \, dy$$

$$=\pi \int_0^{12} \frac{y^2}{36} dy$$

$$=\pi \left[\frac{y^3}{108}\right]_0^{12}$$

$$=\pi\left[\frac{12^3}{108}-0\right]$$

$$=\pi[16-0]$$

$$=16\pi$$

3

1

Note: The 'dy' means we must integrate a function

of 'y'. Hence from y = 6x, we get

$$x = \frac{y}{6}$$
 and $x^2 = \frac{y^2}{36}$.

COPYRIGHT © 1996 NEAP

When region ABC is rotated about y-axis,

$$V = \pi \int_{12}^{16} x^2 dy$$

$$= \pi \int_{12}^{16} (16 - y) dy$$

$$= \pi \left[16y - \frac{1}{2}y^2 \right]_{12}^{16}$$

$$= \pi \left[\left(16 \times 16 - \frac{1}{2} \times 16^2 \right) - \left(16 \times 12 - \frac{1}{2} \times 12^2 \right) \right]$$

$$= \pi \left[(256 - 128) - (192 - 72) \right]$$

$$= 8\pi$$
1

Total Volume = $(16\pi + 8\pi)$ unit³

Volume = 24π unit³

Volume = 75 unit³ (nearest cubic unit). 1

QUESTION 3

(a) Simpson's Rule:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [y_0 + 4y_1 + 2y_2 + 4y_3 + y_4] \qquad 1$$

$$\int_{0}^{2} f(x)dx \approx \frac{0.5}{3} [1 + 4 \times 1.2 + 2 \times 1.6 + 4 \times 2.2 + 3] \qquad 1$$

$$\approx 3.47 \text{ (to 2 decimal places)} \qquad 1$$

A definite integral represents a number. It is only when we find area, volume, etc. using definite integrals, that we place the appropriate units in the answer.

Total = 3

(b) (i)
$$y = x^2 - 6x + 5$$

$$y = (x-1)(x-5)$$

Cuts x-axis at
$$x = 1$$
, $x = 5$

1

When
$$x = 0$$
, $y = 5$

When
$$x = 7$$
, $y = 12$.

1

Total = 3

(ii)
$$A = \left| \int_{1}^{5} (x^2 - 6x + 5) dx \right|$$

$$= \left| \left[\frac{1}{3}x^3 - 3x^2 + 5x \right]_1^5 \right|$$

$$= \left| \left(41\frac{2}{3} - 75 + 25 \right) - \left(\frac{1}{3} - 3 + 5 \right) \right|$$

$$=\left|-8\frac{1}{3}-2\frac{1}{3}\right|$$

The definite integral is a negative number because y < 0 in this domain.

$$= \left| -10\frac{2}{3} \right|$$

Total = 3

Area is $10\frac{2}{3}$ unit².

(iii)
$$\int_1^7 \left(x^2 - 6x + 5 \right) dx$$

$$= \left[\frac{1}{3}x^3 - 3x^2 + 5x \right]_1^7$$

$$= \left(114\frac{1}{3} - 147 + 35\right) - \left(\frac{1}{3} - 3 + 5\right)$$

$$=2\frac{1}{3}-2\frac{1}{3}$$

$$=0$$

$$Total = 2$$

1

(iv) $\int_{1}^{5} (x^2 - 6x + 5) dx$ is a negative number because the values of $(x^2 - 6x + 5)$ are negative in the domain $1 \le x \le 5$.

 $\int_{5}^{7} \left(x^2 - 6x + 5\right) dx \text{ is a positive number}$ because the values of $\left(x^2 - 6x + 5\right)$ are positive in the domain $5 \le x \le 7$.

Since $\int_{1}^{7} (x^2 - 6x + 5) dx = 0$, the area between the curve and the x-axis for $1 \le x \le 5$ is the same as the area between the curve and the x-axis for $5 \le x \le 7$.

Total = 2

1

(c)

 $\int_0^1 x \, dy$ represents the area of OBC.

Area
$$OBC$$
 = area $OABC$ - area OAB

$$=1\times 1-\int_0^1 y\ dx$$

$$= 1 - \int_0^1 y \, dx$$

$$Total = 3$$