2 UNIT TEST NUMBER 8

1996

Trigonometric Functions.

QU	ESTI(ON 1. (7 marks)	Marks
(a)	Exp	ress $\frac{2\pi}{3}$ radians in degrees.	. 1
(b)	Exp	Express 258° in radians, correct to 4 significant figures.	
(c)	A sector AOB of a circle has a radius of 3.5 cm. Its perimeter is 9.5 cm.		5
	(i)	Find the length of the arc AB .	* 4
	(ii)	Find the size of $\angle AOB$.	
	(iii)	Find the area of the sector AOB . Output 3.5 cm B	
QUI	ESTIC	ON 2. (15 marks)	
(a) Diffe		erentiate:	3
ı	(i)	cos 2x	
	(ii)	$\sin(5-x)$	e e
	(iii)	$\tan^3 x$.	
(b)	Find:		5
	(i)	$\int \cos 3x dx$	
	(ii)	$\int \sec^2\left(\frac{x}{2}\right) dx$	
	(iii)	$\int \cot x dx \text{by writing } \cot x \text{ in terms of } \sin x \text{ and } \cos x.$	
(c)	Eval	uate $\int_{0.6}^{1.5} \cos 2x dx$ correct to 4 decimal places.	2
(d)	(i)	Differentiate $x \sin x$.	2
	(ii)	Hence evaluate $\int_0^{\frac{\pi}{2}} x \cos x dx$.	3

This paper is issued by National Educational Advancement Programs (NEAP) to individual schools copyright free for restricted use within that school only.

OUESTION 3. (7 marks)

Marks

State the period and amplitude of the function $y = 3 \sin 2x$.

2

On the same diagram, in the domain $0 \le x \le 2\pi$, draw the graphs of: $y = 3 \sin 2x$ and $y = 1 - \cos x$.

4

For the equation $3 \sin 2x = 1 - \cos x$, how many solutions are there in the domain $0 \le x \le 2\pi$?

1

QUESTION 4. (11 marks)

For the function $y = \sin x$, find the value of $\frac{dy}{dx}$ when x = 2 (correct to 3 decimal places).

6

By substitution, show that the graphs $y = \sin 2x$ and $y = \sin x$ intersect at (b) (i) points whose x-coordinates are x = 0 and $x = \frac{\pi}{3}$.

Find the area between the two graphs for $0 \le x \le \frac{\pi}{3}$. (ii)

The curve $y = \sec x$, for $0 \le x \le \frac{\pi}{3}$, is rotated about the x-axis. Find the volume of the solid formed. (Leave answer as an exact value.) 3

2 UNIT TEST NUMBER 8

1996

SUGGESTED SOLUTIONS

QUESTION 1

(a)
$$\frac{2\pi}{3}^c = \frac{2}{3} \times 180^\circ = 120^\circ$$

1 Note: π radians = 180°

(b)
$$258^{\circ} = 258 \times \frac{\pi}{180}$$
 radians

1

(c) (i)
$$arc AB + 2 \times 3.5 = 9.5$$

$$arc AB = 2.5 cm$$

•

(ii) Using
$$l = r\theta$$

$$2.5 = 3.5 \times \theta$$

1

$$\theta = \frac{2.5}{3.5}$$

 $\angle AOB = \frac{5}{7}$ radians (or 41°)

Total = 2

(iii)
$$A = \frac{1}{2}r^2\theta$$

 $=\frac{1}{2}\times(3.5)^2\times\frac{5}{7}$

Note: θ is in radians in this formula.

Note: θ is in radians in this formula.

Area of sector = 4.375 cm^2

1 Total = 2

QUESTION 2

(a) (i)
$$\frac{d}{dx}\cos 2x = -2\sin 2x$$

1 Using $\frac{d}{dx}\cos f(x) = -f'(x)\sin f(x)$.

(ii)
$$\frac{d}{dx}\sin(5-x) = (-1)\cos(5-x)$$

1 Using $\frac{d}{dx} \sin f(x) = f'(x) \cos f(x)$.

$$= -\cos(5-x)$$

(iii)
$$\frac{d}{dx} \tan^3 x = \frac{d}{dx} (\tan x)^3$$

Using
$$\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1} \times f'(x)$$
.

$$= 3(\tan x)^2 \times \sec^2 x$$

$$= 3 \tan^2 x \sec^2 x$$

(b) (i)
$$\int \cos 3x \, dx = \frac{1}{3} \sin 3x + C$$

Note:
$$\int \sec^2(\alpha x) dx = \frac{1}{a} \tan{(\alpha x)} + C.$$

(ii)
$$\int \sec^2\left(\frac{x}{2}\right) dx = 2 \tan\left(\frac{x}{2}\right) + C$$

(iii)
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx$$

Using
$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C.$$

$$= \ln(\sin x) + C$$

(c)
$$\int_{0.6}^{1.5} \cos 2x \, dx = \left[\frac{1}{2} \sin 2x \right]_{0.6}^{1.5}$$

$$= \frac{1}{2} \sin 3 - \frac{1}{2} \sin 1.2$$

- = -0.3955 (correct to 4 d.p.)
- Note: Use radian mode on your calculator.

Total = 2

(d) (i)
$$\frac{d}{dx} x \sin x = \sin x + x \cos x$$

- 2 Note: By product rule.
- (ii) Make $x \cos x$ the subject of this equation.

$$x\cos x = \frac{d}{dx}x\sin x - \sin x$$
 [from (i)]

 $=\frac{\pi}{2}-1$

1

Note: Differentiation and integration are inverse processes i.e. $\int \frac{d}{dx} x \sin x \, dx = x \sin x.$

$$\int_0^{\frac{\pi}{2}} x \cos x \, dx = \int_0^{\frac{\pi}{2}} \left(\frac{d}{dx} x \sin x - \sin x \right) dx$$

$$= [x\sin x + \cos x]_0^{\frac{\pi}{2}}$$

$$= \left[\frac{\pi}{2} \times 1 + 0\right] - \left[0 + 1\right]$$

QUESTION 3

(a)
$$y = 3\sin 2x$$

Period =
$$\frac{2\pi}{2} = \pi$$

1 Note: Formula
$$T = \frac{2\pi}{n}$$
.

$$I \qquad Total = 2$$

(b)

Note:

$$y = 1 - \cos x$$

i.e. $y = -\cos x + 1$.

To draw $y = 1 - \cos x$, draw $y = -\cos x$ and move it up one unit.

 $3\sin 2x = 1 - \cos x$

has 5 solutions in $0 \le x \le 2\pi$ because there are 5 points of intersection of the two curves (large dots on the diagram).

QUESTION 4

(a)
$$y = \sin x$$

$$\frac{dy}{dx} = \cos x$$

1

1

1

When
$$x = 2$$
, $\frac{dy}{dx} = \cos 2$

$$=-0.416$$
 (3 dec.pl.)

Note: Use radian mode on the calculator.

Total = 2

(i)
$$y = \sin 2x$$
, $y = \sin x$

 $\sin 2x = \sin 0 = 0$ When x = 0,

$$\sin x = \sin 0 = 0$$

1

When
$$x = \frac{\pi}{3}$$
, $\sin 2x = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$

$$\sin x = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

Since both graphs have the same y-value for both x = 0 and $x = \frac{\pi}{3}$, the graphs intersect at

$$x = 0$$
 and $x = \frac{\pi}{3}$

Total = 2

(ii)

$$A = \int_0^{\frac{\pi}{3}} (\sin 2x - \sin x) \, dx$$

$$= \left[-\frac{1}{2}\cos 2x + \cos x \right]_0^{\frac{\pi}{3}}$$

$$= \left[-\frac{1}{2} \cos \frac{2\pi}{3} + \cos \frac{\pi}{3} \right] - \left[-\frac{1}{2} \cos 0 + \cos 0 \right]$$

$$= \left[-\frac{1}{2} \times -\frac{1}{2} + \frac{1}{2} \right] - \left[-\frac{1}{2} \times 1 + 1 \right]$$

$$=\frac{3}{4}-\frac{1}{2}$$

Area =
$$0.25 \text{ unit}^2$$

(c)
$$V = \pi \int_0^{\frac{\pi}{3}} y^2 dx$$

$$=\pi\int_0^{\frac{\pi}{3}}\sec^2x\,dx$$

$$=\pi[\tan x]_0^{\frac{\pi}{3}}$$

$$=\pi\bigg[\tan\frac{\pi}{3}-\tan 0\bigg]$$

$$=\pi \times \sqrt{3}$$

Volume is
$$\sqrt{3} \pi \text{ unit}^3$$

1 Total =
$$3$$