

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Assessment Task 3 Term 2, 2010

Name:		Mathematics Class:	:
	`		

Time Allowed:

60 minutes + 2 minutes reading time

Total Marks:

60

Instructions:

- Questions are of equal value.
- Start each question on a new page. Put your name on every page.
- Show all necessary working. Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- · Do not work in columns.
- Write on one side of each page only.
- Each question will be collected separately. If you do not attempt a question, submit a blank page with your name and the question number clearly displayed.

<u>,</u>
16
Total Control of the

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

7

		3
Question 1 (12 Marks)		Question 2 (12 Marks) Start a NEW page
(a) Find the exact value of $\ln e^4 + \log_{125} 25$.	1	(a) (i) Find $\int \frac{xe^x - 1}{x} dx$.
(b) Calculate the value of $\left(\frac{1}{\sqrt{e^3}}-1\right)^2$ correct to 3 significant figures.	1	(ii) Hence, find the exact value of $\int_{1}^{2} \frac{xe^{x} - 1}{x} dx$
(c) If $\log_a x = 3$ and $\log_a y = 5$, evaluate $\log_a \left(\frac{a}{xy}\right)$	2	(b) Sue deposits \$1000 at the beginning of each year into a holiday fund for 6 years. The interest is compounded yearly at 8% p.a.(i) To how much, to the nearest dollar, will the first \$1000 grow after 6 years?
Write $4 \log y + \log x - \frac{1}{2} \log m$ as a single log.	2	(ii) Sue's planned holiday will cost \$7450. Will she have sufficient funds from the investment? Support your answer with working and calculations.
		(c) Consider the section of the graph of $y = \log_e x$ from the point $\left(\frac{1}{e}, k\right)$ to $(e, 1)$.
(e) Differentiate with respect to x:		(i) Find the value of k.
$(i) y = 5e^{4x+1}$	1	(ii) Sketch the graph of $y = \log_e x$ and indicate these two points.
$(ii) y = \ln(4-2x)$	1 1	Find the exact area between this part of the curve and the y-axis.
(f) Find		Question 3 (12 Marks) Start a NEW page
(f) Find (i) $\int e^{-5x} dx$	1	(a) (i) Show that $\frac{1}{x-2} - \frac{3}{x+2} = \frac{8-2x}{x^2-4}$.
(ii) $\int \frac{4}{e^{2x-1}} dx$	1	Hence, find $\int \frac{2x-8}{x^2-4} dx$.
(g) If \$5000 is placed in an investment account paying 7% p.a. compounded every	2	(b) Consider the curve $y = (x-2)e^x$
six months, how much, to the nearest dollar, will the investment be worth after 3y	years?	(i) Show that $\frac{dy}{dx} = e^x(x-1)$ and $\frac{d^2y}{dx^2} = xe^x$.
		(ii) Find any x-intercepts.
		(iii) Show that there is one stationary point at $(1, -e)$ and determine its nature.
•		(iv) Find any points of inflexion.

(v)

What happens to $(x-2)e^x$ as $x \to -\infty$.

(vi) Hence, sketch the curve showing the above features.

Marks

Marks

			,
Quest	tion 4	(12 Marks) Start a NEW page	Marks
(a)	Differ	entiate $(\log_e x)^4$	2
(b)	The curve $f(x) = \ln(x-1)$ between $x = e$ and $x = 3e$ is rotated around the x-axis.		
	(i)	Write the integral which gives the value of this volume. (Do not evaluate the volume)	1
		Use Simpson's Rule with 3 function values to approximate the volume. Give your answer correct to 2 decimal places.	3
(c)		wishes to purchase a new lounge suite costing \$5432. The store offers to lend her oney under the following terms:	
	•	No interest will be charged for the first 12 months.	
	•	After 12 months she will be charged interest at 18% p.a., compounded monthly on any outstanding debt.	
	•	The loan must be paid completely after 3 years.	
	•	Judy must pay a fixed amount, M , each month (including during the first non-interest period).	
	Let A_n be the amount Judy owes after n months.		
	(i)	Write an expression for the amount Judy owes after one year.	1
	(ii)	Show that the expression for the amount Judy owes after 15 months is	
		$A_{15} = 1.015^{3}(5432 - 12M) - M(1 + 1.015 + 1.015^{2})$	2

Hence, write an expression for the amount Judy owes after 3 years.

Find the amount M, to the nearest cents, of each monthly payment.

Marks

3

- Find the equation of the tangent to the curve $y = e^{x^2} 3x$ at the point where x = 1. Write your answer in y = mx + b form.
- Given $y = e^{4x} + e^{-3x}$ find the exact value of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} 4y$. 3
- The shaded region bounded by the graph $y = \frac{1}{1-x}$ for x < 1, the line y = 2 and the y-axis is rotated about the y-axis to form a solid of revolution.

Show that the volume of the solid is given by:

$$V = \pi \int_{1}^{2} \left(1 - \frac{2}{y} + \frac{1}{y^{2}} \right) dy$$

Find the exact volume V, of the solid formed.

3

3

End of paper

1

2

Solutions

(1)
$$\log e^{2} + (\log 5^{3})^{2}$$

= $4 + \frac{2}{3}$
= $4^{\frac{2}{3}}$

c)
$$\log \alpha \Omega - \log \alpha \Omega - \log \alpha \Omega$$

= $1 - 3 - 5$
= -7

a)
$$\log y^4 + \log x - \log \sqrt{m}$$

= $\log \left(\frac{xy^4}{\sqrt{m}}\right)$

e) (7)
$$\frac{dy}{dx} = 20e^{+x+1}$$

$$= e^{x} - \ln x + C$$

$$(ii) \int_{1}^{2} \frac{x e^{x} - 1}{x} dx = \left[e^{x} - \ln x \right]_{1}^{2}$$

$$= e^{2} - e - \ln 2$$

$$\therefore \int_{1}^{2} \frac{\alpha e^{\alpha} - 1}{x} dx = e^{2} - e - \ln 2$$

$$f(7) = \frac{e^{-5x}}{10} = \frac{e^{-5x}}{-5} + c$$

(ii)
$$\int \frac{4}{e^{2x-1}} dx = 4 \int e^{1-2x} dx$$
$$= 4 \times \frac{e^{1-2x}}{2} + 2 = -2 \cdot e^{1-2x} + C$$

9)
$$A = P(1+\Gamma)^{n}$$

 $\Gamma = 7.7$, $Pa = 3.5.7$, per 6 month
 $n = 3yrs = 6$ periods

y = loge e7

(i) Let
$$An = amount invested after $n y = A_n = P(1+r)^n$
.: $A_1 = (000 (1+0.08)^6 = 1586.87$
.: $ 1586.87$$

(ii)
$$A_{2} = 1000 \times 1.08^{5}$$

 $A_{3} = 1000 \times 1.08^{4}$

A 6 = (000 × 1.081

now,
$$(1.08 + 1.08^2 + \cdots + 1.08^6)$$
 is a GS with $\alpha = 1.08$, $r = 1.08$, $n = 6$ $S_n = \frac{\alpha(r^n - 1)}{r - 1}$

$$S_6 = \frac{1.08(1.08^6 - 1)}{r - 1}$$

(3) (a) (i)
$$\frac{1}{x-2} - \frac{3}{x+2} = \frac{8-2\pi}{9\ell^2-4}$$

LHS = $\frac{1}{x-1} - \frac{3}{x+2}$

$$= \frac{x+2-3(x-2)}{(x-2)(x+2)}$$

$$= \frac{2+2-3x+6}{x^2-4}$$

$$= \frac{8-2x}{x^2-4}$$
= RHS

(ii)
$$\int \frac{2x-8}{x^2-4} dx = -\int \frac{8-2x}{x^2-4} dx$$

$$= -\int \left(\frac{1}{x-2} - \frac{3}{x+2}\right) dx$$

$$= \int \left(\frac{3}{x+2} - \frac{1}{x-2}\right) dx$$

$$= 3 \ln(x+2) - \ln(x-2) + C$$

$$= \ln\left(\frac{(x+2)^3}{x-2}\right) + C$$

b)
$$y = (x - a)e^{x}$$

(7) $\frac{dy}{dx} = e^{x} + (x - a)e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x}(x - i) + e^{x}$
 $= e^{x}(x - i)$ $= e^{x} \times x$

(ii) to find
$$x-nt$$
, let $y=0$

$$0=(x-2)e^{x}$$

(iii) to find a stationary point let
$$\frac{dy}{dx} = 0$$

$$e^{x}(x-t) = 0$$

when
$$x=1$$
 ($e^{x} \neq 0$)

When $x=1$,

 $y=-e$ and $\frac{d^{2}y}{dx}=e^{x}>0$

... (1, -e) is a min turning point

CiV) to find a POI, let
$$\frac{d^2y}{dx^2} = 0$$

 $y = 0$ ($e^{x} \neq 0$)

When
$$x=0$$
, $y=-2$
 $x \mid 0^{-} \mid 0 \mid 0^{+}$
 $d^{1}y \mid - \mid 0 \mid + \quad (0,-2) \mid 3 \mid \alpha \mid POZ$

(v) as
$$x \rightarrow -\infty$$
, $e^x \rightarrow 0$ $(x-x)e^x \rightarrow 0^-$

(4) (a)
$$\frac{d}{dx} (\log ex)^4 = 4(\log ex)^3 \times \frac{1}{x}$$

$$= \frac{4(\log ex)^3}{2x}$$

(b)
$$f(x) = \ln (x-1)$$
(1)
$$V = \pi \int_{a}^{b} y^{2} dx$$

$$\therefore V = \pi \int_{e}^{3e} (\ln (x-1))^{2} dx$$
(ii)

$$V = \frac{h}{3} \left[f(e) + 4f(2e) + f(3e) \right]$$

(c) (i)
$$A_1 = 5432 - M$$

 $A_2 = 5432 - 2M$
:

(i)
$$A_{13} = (5432 - 12M) \times 1.015 - M$$

 $A_{14} = ((5432 - 12M) \times 1.015 - M) \times 1.015 - M$
 $= (5432 - 12M) \times 1.015^{2} - M(1+1.015)$

(iv) Now (t+1.015+...+ (+015²³) is a GS with
$$A=1, r=1.015, n=24. Sn=\frac{A(r-1)}{r-1}$$

$$S_{24}=\frac{1.015^{24}-1}{1.015-1}$$

, and
$$A_{3b} = 0$$
 (... the loca must be part completely after 3b months)

Hence

$$A_{36} = (5432-12M) \times 1.015^{24} - M \left(\frac{1.015^{24}-1}{0.015}\right)$$

$$0 = 5432 \times 1.015^{24} - 12M \times 1.015^{24} - M \left(\frac{1.015^{24} - 1}{0.015} \right)$$

$$M \left(12 \times 1.015^{24} + \frac{1.015^{24} - 1}{0.015} \right) = 5432 \times 1.015^{24}$$

(b) (a)
$$y = e^{x^2} - 3x$$
 $y' = 2x e^{x^2} - 3$
 $y' = 2x e^{x^2} - 3$
 $y' = 2x e^{x^2} - 3$
 $y = 4$
 $y' = 2e - 3$
 $y = 4$
 $y' = 2e - 3$
 $y = 4$
 $y' = 2e - 3$
 $y = (2e - 3)(x - 1)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$
 $y = (2e - 3)(x - 2e + 3)$