

NORTH SYDNEY GIRLS HIGH SCHOOL

Mathematics Extension1 Assessment Task 3 Term 2 2010

Name:	Mathematics Class:	

Time Allowed:

55 minutes + 2 minutes reading time

Available Marks:

49

Instructions:

- Start each question on a new page.
- Attempt all six questions.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Write on one side of the page only. Do not work in columns.
- Questions are not of equal value.

·												
	1ab	1c	2ab	2cd	3a	3ъ	3c	4a	4b	5	6	Total
H8					5					200		TOTAL
Н3	5 /6				. /2							· ·
H5		O /2	7 /4									
HE4			1, 14	2			/5		, . [*] . J5			1
HE6						S.		/2		2/8		[[e], -1
HE7						د ر ا						ر دی
Totals	× × × × × × × × × × × × × × × × × × ×	/o	104-104-10-10-10-10-10-10-10-10-10-10-10-10-10-	10210110							1.	1.
	L	/8	<u> </u>	/9	L		/10		17	/8		1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	1		ž			ç		8 1		1.5	00	

Question 1 (8marks) Start a new page.	Marks
(a) If $\log_a b = 2.8$ and $\log_a c = 4.1$, find	
(i) $\log_a \frac{1}{\sqrt{c}}$	1
$a^{5.6}$ in terms of b .	1
(b) Consider the function $y = e^{kx}$ where k is a constant	
(i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	2
(ii) Determine the value(s) of k for which $y = e^{kx}$ satisfies the equation	n 2
$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 15y = 0.$	
(c) Find $\int \tan^2 \left(\frac{x}{2}\right) dx$.	2
Question 2 (9 marks) Start a new page.	Marks
(a) Find the exact value of $\int_0^{\frac{\pi}{4}} \cos^2 x dx$.	. 2
(b) Evaluate $\lim_{h\to 0} \left(\frac{h+\tan 2h}{\sin 2h} \right)$.	2
Find the exact value of $\tan \left[\sin^{-1} \left(-\frac{2}{3} \right) \right]$	2
(d) Consider the function $y = 2\sin^{-1}\left(\frac{x}{3}\right)$	
(i) State its domain and range.	. 2
(ii) Sketch the curve.	1

Question 3 (10 Marks). Start a new page.

Marks

2

3

2

3

(a) Determine the value of m such that $\int_{1}^{2m} 3t^2 dt = 215$

a) Find $\int \frac{dx}{9+4x^2}$

Question 4 (7 Marks)

2

Marks

(b) Use the substitution u = 5x + 4 to evaluate $\int_0^1 \frac{5x}{\sqrt{5x+4}} dx$.

Billy Bunter is 60 years only and plans to retire in 2014. He joined a superannuation scheme at the beginning of 1974. At the beginning of each year, he invested \$750 in the fund. The investment earns 9% per annum compound interest, calculated yearly.

Start a new page

- (c) A solid has a uniform cross section as shown below.
 - $D = \begin{pmatrix} x & & & \\ & \frac{x}{2} & & 0 & \frac{x}{2} \end{pmatrix} F$

(i) Find, to the nearest dollar, the amount to which the first investment made in 1974 will have grown by the beginning of 2014
 (ii) To what amount, to the nearest dollar, will the whole investment reach by the beginning of 2014?
 (iii) If the investment interest rate was halved after the first 20 years, what amount 2

The cross-section consists of a semi-circle *DEF*, centre O and radius $\frac{x}{2}$ and a sector of radius x, centre D and angle θ . All angles are measured in radians.

Question 5 (8 Marks) Start a new page. Marks

would the first investment of 1974 reach by the beginning 2014?

(i) What is the perimeter of *DEFG* in terms of x and θ ?

(a) Sketch the graph of this function using the same scale on both coordinate axes

Consider the function f(x) = (1+x)(3-x)

(ii) If the area of the cross-section is given to be constant, then the perimeter P is found to be $P = \frac{2}{x} + x \left(1 + \frac{\pi}{4}\right)$. (Do NOT prove this)

Show that the minimum perimeter of the cross-section occurs when

(b) The function y = g(x) is defined by restricting the domain of y = f(x) so that y = g(x) has an inverse function. What is the largest domain containing the value x = 0, for which the function y = g(x) has an inverse function $y = g^{-1}(x)$?

showing the maximum turning point and the intercepts on the x-axis.

 $x^2 = \frac{8}{\pi + 4}$

- (c) Sketch the graph of $y = g^{-1}(x)$ with the graph of y = g(x) on a new set of axes.
- Find the equation of the function $y = g^{-1}(x)$.

2

1

3

Question 6 (7 Marks)

Start a new page.

Marks

Consider the function $f(x) = e^x \left(1 - \frac{x}{10}\right)^{10}$ whose graph has only two turning points at (0,1) and (10,0).

- (a) Explain why $f(x) \ge 0$ for all x.
- (b) Show that as x approaches negative infinity, f(x) approaches zero.
- Without using calculus, sketch the graph of $y = e^x \left(1 \frac{x}{10}\right)^{10}$.
- (d) Using your graph, state the range of f(x) for x < 10.
- (e) From the graph, deduce that

$$e^x \le \left(1 - \frac{x}{10}\right)^{-10}$$
 for $x < 10$

END OF TEST

Question2
$a)\int_{0}^{T_{0}}\cos^{2}x dx$
$= \frac{1}{2} \int_0^{\frac{\pi}{4}} (\cos 2x + 1) dx$
$= \frac{1}{2} \left[\int_{-\infty}^{\infty} S(in2x + x) \int_{0}^{\pi/y} dx \right]$
$=\frac{1}{4}+\frac{7}{8} \text{ or } 2tT$
b) lin (h + tanah) h>0 (sinah sinah)
$= \lim_{h \to 0} \left(2h \times 1 + 1 \right)$ $h \to 0 \text{Sin2h} 2 \cos 2h$
= 5 + 1 = 3
c) $tan\left[\sin^{7}\left(-2\right)\right]$ $\frac{1}{3}$
= -2 or -25 4th Quadrant angle.
$\frac{d}{d} = 2\sin\left(\frac{2}{3}\right)$
(i) Domain -3 ≤ x ≤ 3 Range -T ≤ y ≤ T
-3 0 3 x

Question3	Q3 (cant)	Question 4
a) $\int_{1}^{2\infty} 3t^2 dt$	c) i) Perimeter = $\pi \cdot \frac{x}{2} + x\theta + x$	a) $\int \frac{dx}{9+4x^2}$
$= \int \frac{t^3}{1}$ = $8m^3 - 1$	$= x\left(\frac{\pi}{2} + \theta + 1\right)$ (ii) $P = \frac{2}{2} + x\left(1 + \frac{\pi}{4}\right)$	$= \frac{1}{6} \frac{\tan^{-1} 2x}{3} + C$
8m ² -1 = 215	$\frac{dP = -2 + (1+T)}{dx + x^2}$	b) (i) $A_{40} = 750 \times 1.09^{40}$ = \$\frac{1}{2}3,557
$gm^3 = 216$ $m = 3$	Minimum occurs when $dR = 0$ dx $2 = 1 + T$	(ii) Total = $A_{40} + A_{39} + A_{1}$ = $750 \times 1.09^{40} + 750 \times (.09^{39} +) \times 1.09^{40}$ = $750 (1.09 + 1.09^{2} +) \times 1.09^{40}$ = 750×1.09^{40}
dx = 5x + 4 $dx = 5dx$ $dx = dx$	$\frac{2}{\chi^2} = \frac{4+17}{4}$	$= \frac{750 \times 1.09 (1.09^{40} - 1)}{1.09 - 1}$ $= $276, 219$
x = 1, u = 9 $x = 0, u = 4$	$8 = x^{2}$ $4+\pi$ $7 = x^{2} + \pi $ $4 + \pi $ $7 = x^{2} + \pi $ $4 +$	The above assumes a new investment of \$750 was not invested at the beginning of 2014.
5x olx 0 V5x+4	$\frac{d^2P = + \frac{4}{4}}{dx^2 \qquad \qquad$	
$= \frac{1}{5} \int_{4}^{7} \frac{u-4}{u^{\frac{1}{2}}} du$ $= \frac{1}{5} \int_{4}^{9} \frac{u^{\frac{1}{2}}}{u^{\frac{1}{2}}} - 4u^{\frac{1}{2}} du$	Since x>0, (x is a measurement) Then der > 0 der	= \$10,137.18
$=\frac{1}{5}\int_{\frac{2u^{3/2}}{3}}\frac{2u^{3/2}}{3}-\frac{8u^{3/2}}{3}\Big _{\frac{9}{4}}^{9}$	$\frac{1}{2} = \frac{8}{2}$	
$= \frac{1}{8} \left(\frac{18 - 24 - 16 + 16}{3} \right)$	4+11	
//5		
	1	

