NSW INDEPENDENT SCHOOLS

2001 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

• Reading time - 5minutes

• Working time - 2 hours

• Write using black or blue pen

· Board approved calculators may be used

• A table of standard integrals is provided on the last page

 All necessary working should be shown in every question Total marks (84)

Attempt Questions 1-7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NAME/NUMBER:

Question 1 (Start a new work book)		
a.	Determine the ratio in which the point $C(6, 9)$ divides the interval AB, where A is the point $(-1, -5)$ and B the point $(3, 3)$.	3
b	Solve the inequality $x - 1 \le \frac{1}{x - 1}$.	3
C.	For the polynomial $P(x) = x^3 - 2x^2 - x + 2$	
	i. show that $x - 1$ is a factor. ii. Hence, or otherwise, find all the factors of $P(x)$.	1
đ.	i If $t = \tan \frac{\theta}{2}$, show that $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$.	2
	ii. Using these results, show that $\frac{1-\cos\theta}{\sin\theta}=\tan\frac{\theta}{2}$.	1
	iii Hence find the exact value of tan 15°.	1
_	a (G)	
Qu	estion 2 (Start a new work book)	
a.	For the parabola defined by the parametric equations $x = 4t$, $y = 2t^2$	
	i. by differentiation, show that the gradient of the tangent at the point, P, where $t = 3$, is 3.	1
	ii. find the gradient of the focal chord through P.	1
	iii. calculate the acute angle between the tangent at P and the focal chord through P.	2
b.	Use one iteration of Newton's method to find an approximation to the root of the equation $x \log_e x - 2x = 0$ near $x = 7$. Give your answer to 1 decimal place.	3
c.	Six people attend a dinner party.	
	i. In how many different ways can they be arranged around a round table?	1
	ii. In how many different ways can they be arranged if a particular couple must sit together?	1
	iii What is the probability that, if the people are seated at random, the couple are sitting apart from each other?	1

STUDENT NAME/NUMBER:

Question 2 (continued)

Marks 2

3

2

4

d. PC and PD are equal chords of a circle. A tangent, AB, is drawn at P.

Prove that AB is parallel to CD

Question 3 (Start a new work book)

- a Jane, a netball goal shooter, has a 70% probability of scoring a goal at any attempt. In her next 10 attempts at scoring, what is the probability that she scores at least 8 times? Give your answer as a decimal to 2 significant figures.
- b. Show that the equation of the circle whose diameter is the join of the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $(x x_1)(x x_2) + (y y_1)(y y_2) = 0$
- Use the Principle of Mathematical Induction to prove that 2³ⁿ 3ⁿ is divisible by 5 for all positive integers n.
- d. The arc of the curve $y = \cos 2x$ between x = 0 and $x = \frac{\pi}{6}$ is rotated through 360° about the x-axis.

Find the exact volume of the solid formed.

Question 4 (Start a new work book)

a If
$$\binom{n}{r} = \binom{n}{r+1}$$
, where *n* and *r* are positive integers, show that *n* is odd.

b. i. Express
$$x^2 + 6x + 13$$
 in the form $(x + a)^2 + b^2$

ii. Hence, using the substitution
$$u = x + 3$$
, find $\int \frac{dx}{x^2 + 6x + 13}$

STUDENT NAME/NUMBER:

Qı	nestion 4 (continued)	Marks		
C.	Show that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$	3		
d.	If $y = \frac{1}{2}(e^x - e^{-x})$, show that $x = \log_e(y + \sqrt{y^2 + 1})$	3		
	•			
Question 5 (Start a new work book)				
a.	A particle's motion is defined by the equation $v^2 = 12 + 4x - x^2$, where x is its displacement from the origin in metres and v its velocity in ms ⁻¹ . Initially, the particle is 6 metres to the right of the origin.			
	i. Show that the particle is moving in Simple Harmonic Motion	1		
	ii. Find the centre, the period and the amplitude of the motion	3		
	iii. The displacement of the particle at any time t is given by the equation $x = a\sin(nt + \theta) + b$.			
	Find the values of θ and b , given $0 \le \theta \le 2\pi$	2		
b.	Newton's Law of Cooling states that the rate of change in the temperature, T , of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P .			
	i If A and k are constants, show that the equation $T = P + Ae^{kt}$ satisfies Newton's Law of Cooling.	2		
	ii. A cup of tea with a temperature of 100° C is too hot to drink. Two minutes later, the temperature has dropped to 93° C. If the surrounding temperature is 23° C, calculate A and k.	2		
	iii. The tea will be drinkable when the temperature has dropped to 80°C. How long, to the nearest minute, will this take?	2		

STUDENT NAME/NUMBER:

C (C) to many swamp hools)

Marks

Question 6 (Start a new work book)		Maiks
a.	A particle is projected horizontally with velocity, $V \mathrm{ms^{-1}}$, from a point $h \mathrm{metres}$ above the ground Take $g \mathrm{ms^{-2}}$ as the acceleration due to gravity.	
	i Taking the origin at the point on ground immediately below the projection point, find expressions for x and y, the horizontal and vertical displacements respectively of the particle at time t seconds.	2
	ii. Hence show that the equation of the path of the particle is given by the equation $y = \frac{2hV^2 - gx^2}{2V^2}$.	2
	iii. Find how far the particle travels horizontally from its point of projection before it hits the ground	2
b.	A particle moves in a straight line so that its velocity after t seconds is v ms ⁻¹ and its displacement is x .	
	i. Given that $\frac{d^2x}{dt^2} = 10x - 2x^3$ and that $v = 0$ when $x = -1$, find v in terms of x	3
	ii. Explain why the motion cannot exist between $x = -1$ and $x = 1$.	2
	iii. Describe briefly what would have happened if the motion had commenced at $x = 0$ with $v = 0$	1

Question 7 (Start a new work book)

a. In the circle, the chord AB is 6 metres long. The chord is produced to the point P and BP is a metres.

A tangent to the circle cuts the chord at P. PT is x metres

Show that
$$x = \sqrt{a(a + 6)}$$

Marks

2

3

2

2

2

1

b. In a rugby game, teams score points by placing the ball over the try line at the end of the field. A kicker may then take the ball back at right angles from the try line and attempt to kick the ball between the goal posts.

In the diagram, a try has been scored α metres to the right of the goal posts. The kicker has brought the ball back to the point P to attempt his kick. The kicker wants to maximise θ , his angle of view of the goalposts.

Let PT be x metres and assume that the goal posts are 6 metres wide.

i. Show that
$$\tan \theta = \frac{6x}{a^2 + 6a + x^2}$$
.

ii. Letting $T = \tan \theta$, find the value of x for which T is a maximum.

iii Hence show that the maximum angle,
$$\theta$$
, is given by $\theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}} \right)$

iv. If a try is scored 10 metres to the right of the goal posts, find the maximum value of θ (to the nearest minute) and the corresponding value of x (to the nearest centimetre).

v. Explain why the goal kicker, to maximise his angle of view of the goal posts, should imagine himself at the point of contact of a tangent to the circle passing through the goal posts.

2001 INDEPENDENT TRIALS: MATHEMATICS EXTENSION 1 SAMPLE SOLUTIONS

Question 1:

a.
$$x = \frac{kx_2 + lx_1}{k + l}$$

$$6 = \frac{k \times 3 + l \times -1}{k + l}$$

$$6k + 6l = 3k - l$$

$$3k = -7l$$

$$k: l = -7: 3$$

i.e C divides AB externally in the ratio 7:3

Critical points: x = 1 and $x - 1 = \frac{1}{x - 1}$

Solving:
$$(x - 1)^2 = 1$$

 $x - 1 = \pm 1$
 $\therefore x = 0, 2$

Testing regions x < 0, 0 < x < 1, 1 < x < 2 and x > 2 gives solutions

$$x < 0$$
 and $1 < x \le 2$

c. i.
$$P(1) = 1^3 - 2 \times 1^2 - 1 + 2 = 0$$
. Hence $x - 1$ is a factor

ii.
$$P(x) = x^2(x-2) - (x-2) = (x-2)(x^2-1) = (x-2)(x-1)(x+1)$$

i. Book work

ii.
$$1 - \frac{1 - t^2}{1 + t^2} = \frac{1 + t^2 - 1 + t^2}{2t}$$

$$= t$$

$$= \tan \frac{\theta}{2}$$
iii. $\tan 15^\circ = \frac{1 - \cos 30^\circ}{\sin 30^\circ} = \frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 - \sqrt{3}$

Question 2:

a i.
$$\frac{dy}{dx} = \frac{dy/dx}{dx/dt} = \frac{4t}{4} = t$$
; therefore, $m = 3$
ii Focus (0, 2) and point (12, 18); therefore $m = \frac{4}{3}$

Question 2 (continued)

iii
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{3 - \frac{4}{3}}{1 + 3 \times \frac{4}{3}} \right| = \frac{1}{3}$$

$$\therefore \theta = 18^{\circ}26^{\circ}$$

b.
$$x' = x - \frac{f(x)}{f'(x)} = 7 - \frac{7 \ln 7 - 2 \times 7}{\ln 7 - 1} = 6.5997199$$
, so $x = 6.6$

i. (n-1)! = 5! = 120

ii. Counting the couple as one, $4! \times 2! = 48$

iii. There are 48 ways they can sit together so there are 120 - 48 = 72 ways to sit apart P(sit apart) = 72/120 = 3/5

d. $\angle APC = \angle PDC$ (angles between tangent and chord equals angle in the alt. segment) ∠PDC = ∠PCD (base angles in isosceles triangle are equal) .. $\angle APC = \angle PCD$ and $AB \parallel CD$ (if alternate angles are equal, lines are parallel)

Question 3

Let p = probability of scoring a goal = .7

Let q = probability of missing = 3

Let n = 10 and r = number of goals scored

Then
$$P(X = r) = \binom{n}{r} p^r q^{n-r}$$
 and
$$P(X \ge 8) = P(X = 8 \text{ or } X = 9 \text{ or } X = 10)$$

$$= \binom{10}{8} 0.7^8 \times 0.3^2 + \binom{10}{9} 0.7^9 \times 0.3 + \binom{10}{10} 0.7^{10}$$

$$= 0.382827864 = 0.38$$

Let P(x, y) be a point on the circle. Then $\angle APB = 90^{\circ}$ (angle in a semicircle is a rt angle) Hence AP \perp PB and $m_{AP}m_{PR} = -1$

$$\frac{y-y_1}{x-x_1} \times \frac{y-y_2}{x-x_2} = -1$$
whence $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$

c. Let $f(n) = 2^{3n} - 3^n$ Then $f(1) = 2^3 - 3 = 5$ which is divisible by 5

Assume that $f(k) = 2^{3k} - 3^k$ is divisible by 5 for k a positive integer, and show that f(k + 1)is therefore also divisible by 5

Ouestion 3 (continued)

Then
$$f(k + 1) = 2^{3(k + 1)} - 3^{k + 1}$$

 $= 2^{3k} \times 2^3 - 3^k \times 3$
 $= 8 \times 2^{3k} - 3 \times 3^k$
 $= 5 \times 2^{3k} + 3 \times 2^{3k} - 3 \times 3^k$
 $= 5 \times 2^{3k} + 3 \times (2^{3k} - 3^k)$

The first term is clearly divisible by 5 and $2^{3k} - 3^k$ is also divisible by 5 by our assumption above. Therefore f(k + 1) is divisible by 5 if f(k) is divisible by 5

But f(1) is divisible by 5, so f(2) is divisible by 5 and so on for all positive integers n.

d
$$V = \pi \int_0^{\frac{\pi}{6}} \cos^2 2x dx$$

 $= \pi \times \frac{1}{2} \left[x - \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{6}}$
 $= \frac{\pi}{2} \times \left[\left(\frac{\pi}{6} + \frac{1}{4} \sin \frac{2\pi}{3} \right) - (0 - 0) \right]$
 $= \frac{\pi}{2} \left[\frac{\pi}{6} + \frac{\sqrt{3}}{8} \right]$

Question 4

a
$$\begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n \\ r+1 \end{pmatrix}$$

$$\frac{n!}{r!(n-r)!} = \frac{n!}{(r+1)!(n-r-1)!}$$

$$\frac{(n-r-1)!}{(n-r)!} = \frac{r!}{(r+1)!}$$

$$\frac{1}{n-r} = \frac{1}{r+1}$$

$$\therefore r+1 = n-r$$

$$n = 2r+1$$

and since r is a positive integer, n is odd

b. i.
$$x^2 + 6x + 13 = x^2 + 6x + 9 + 4 = (x + 3)^2 + 4$$

ii. $u = x + 3 \Rightarrow du = dx$ so
$$\int \frac{dx}{x^2 + 6x + 13} = \int \frac{dx}{(x + 3)^2 + 4}$$

$$= \int \frac{du}{u^2 + 4}$$

$$= \frac{1}{2} \tan^{-1} \frac{u}{2} + C$$

$$= \frac{1}{2} \tan^{-1} \frac{(x + 3)}{2} + C$$

Ouestion 4 (continued)

c. Let
$$\alpha = \cos^{-1}\left(\frac{4}{5}\right)$$
 and $\beta = \cos^{-1}\left(\frac{3}{5}\right)$; then $\cos \alpha = \frac{4}{5}$ and $\cos \beta = \frac{3}{5}$
Therefore, $\sin \alpha = \frac{3}{5}$ and $\sin \beta = \frac{4}{5}$

Consider
$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$
$$= \frac{4}{5} \times \frac{3}{5} - \frac{3}{5} \times \frac{4}{5}$$
$$= 0$$
$$\therefore \cos(\alpha + \beta) = 0$$
$$\alpha + \beta = \frac{\pi}{2}$$
i.e.
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$$

d.
$$y = \frac{1}{2}(e^{x} - e^{-x})$$

 $2y = e^{x} - \frac{1}{e^{x}}$
 $2ye^{x} = e^{2x} - 1$
 $0 = e^{2x} - 2ye^{x} - 1$
 $\therefore e^{x} = \frac{2y \pm \sqrt{4y^{2} + 4}}{2}$
 $= \frac{2y \pm 2\sqrt{y^{2} + 1}}{2}$
 $= y \pm \sqrt{y^{2} + 1}$
but $e^{x} > 0$ and $\sqrt{y^{2} + 1} > y$
 $\therefore e^{x} = y + \sqrt{y^{2} + 1}$
so $x = \ln(y + \sqrt{y^{2} + 1})$

Question 5

a. i. Now
$$\ddot{x} = \frac{d}{dx} [\frac{1}{2}v^2]$$
 and $\frac{1}{2}v^2 = 6 + 2x - \frac{1}{2}x^2$

Therefore $\ddot{x} = 2 - x = -1(x - 2)$ so the motion is Simple Harmonic

ii. Centre of motion is 2 (where
$$\vec{x} = 0$$
) and $n = 1$ so period $T = \frac{2\pi}{n} = 2\pi$

Extremes of motion occur when v = 0 i.e. when $6 + 2x - \frac{1}{2}x^2 = 0 \Rightarrow x = -2$, 6 so the amplitude is 4.

iii. Now
$$a = 4$$
, $n = 1$ and the centre of motion, $b = 2$ so $x = 4\sin(t + \theta) + 2$

Further when
$$t = 0$$
, $x = 6$ so $6 = 4\sin\theta + 2 \Rightarrow \theta = \frac{\pi}{2}$

$$\therefore x = 4\sin(t + \frac{\pi}{2}) + 2$$

Question 5 (continued)

b i. Newton's Law is
$$\frac{dT}{dt} = k(T - P)$$

If $T = P + Ae^{kt}$ then $\frac{dT}{dt} = k \times Ae^{kt} = k(T - P)$
ii. $100 = 23 + Ae^0 \Rightarrow A = 77$
and $93 = 23 + 77e^{k \times 2} \Rightarrow e^{2k} = \frac{70}{77}$

$$\therefore k = \frac{1}{2} \ln \frac{70}{77} = -0.0476550899 = -0.0477$$
iii. $80 = 23 + 77 \times e^{-0.0477 \times 1} \Rightarrow t = \frac{\ln \frac{57}{77}}{-0.0477} = 6.31106047 \approx 6$ minutes

Question 6

i In the x direction:
$$\ddot{x} = 0 \Rightarrow \dot{x} = \int 0 dt = C_1$$
When $t = 0$, $\dot{x} = V \Rightarrow C_1 = V$

$$\therefore \dot{x} = V$$

$$x = \int V dt = Vt + C_2$$
When $t = 0$, $x = 0 \Rightarrow C_2 = 0$

$$\therefore x = Vt$$

In the y direction:
$$\ddot{y} = -g \Rightarrow \dot{y} = \int -g dt = -gt + C_3$$
When $t = 0$, $\dot{y} = 0 \Rightarrow C_3 = 0$

$$\therefore \dot{y} = -gt$$

$$y = \int -gt dt = -\frac{1}{2}gt^2 + C_4$$
When $t = 0$, $y = h \Rightarrow C_4 = h$

$$\therefore y = -\frac{1}{2}gt^2 + h$$

ii.
$$x = Vt \rightarrow t = \frac{x}{V}$$
. Substitute into $y = -\frac{1}{2}gt^2 + h$

$$y = -\frac{1}{2}g \times \left(\frac{x}{V}\right)^2 + h$$

$$= \frac{-gx^2}{2V^2} + h$$

$$= \frac{-gx^2 + 2V^2h}{2V^2}$$

iii. We require
$$y = 0$$
 thus $\frac{-gx^2 + 2V^2h}{2V^2} = 0 \Rightarrow x^2 = \frac{2V^2h}{g} \Rightarrow x = \pm \sqrt{\frac{2V^2h}{g}}$
But the particle is moving in a positive direction so $x = V\sqrt{\frac{2h}{g}}$

(E)

Ouestion 6 (continued)

b. i.
$$\frac{d}{dx} \left[\frac{1}{2} v^2 \right] = 10x - 2x^3$$

$$\frac{d}{dx} \left[\frac{1}{2} v^2 \right] = \int 10x - 2x^3 dx = 5x^2 - \frac{x^4}{2} + C$$

$$v^2 = 10x^2 - x^4 + K \text{ and when } v = 0, x = -1 \rightarrow K = -9$$

$$v^2 = 10x^2 - x^4 - 9$$

$$v = \pm \sqrt{10x^2 - x^4 - 9}$$

ii
$$v^2 = -(x^4 - 10x^2 + 9) = -(x^2 - 1)(x^2 - 9) = -(x - 1)(x + 1)(x - 3)(x + 3)$$

Hence v = 0 when x = -3, -1, 1, 3From graph, between x = -1 and $x = 1, v^2 < 0$ so the motion cannot exist between x = -1and x = 1

iii. If x = 0, then acceleration is zero. Since v = 0, the particle would remain stationary.

Ouestion 7

a. Now PT² = AP × BP (On a circle, the square of the length of the tangent from an external point equals the product of the intercepts of the secant through the point)

Therefore
$$x^2 = a \times (a + 6) \Rightarrow x = \sqrt{a(a + 6)}$$

b. i. Now
$$\tan \alpha = \frac{x}{a+6}$$
, $\tan \beta = \frac{x}{a}$, $\theta = \beta - \alpha$

$$= \frac{\frac{x}{a} - \frac{x}{a+6}}{1 + \frac{x}{a} \times \frac{x}{a+6}} = \frac{(a+6)x - ax}{a(a+6) + x^2} = \frac{6x}{a^2 + 6a + x^2}$$

ii.
$$\frac{dT}{dx} = \frac{(a^2 + 6a + x^2) \times 6 - 6x(2x)}{(a^2 + 6a + x^2)^2} = \frac{6a^2 + 36a - 6x^2}{(a^2 + 6a + x^2)^2} = 0$$
 when $x = \sqrt{a(a + 6)}$

When $x < \sqrt{a(a+6)}$, $\frac{dT}{dx} > 0$; when $x > \sqrt{a(a+6)}$, $\frac{dT}{dx} < 0$; therefore this is a max.

iii.
$$T = \tan \theta = \frac{6\sqrt{a(a+6)}}{a^2 + 6a + (a^2 + 6a)} = \frac{3}{\sqrt{a^2 + 6a}} \Rightarrow \theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}}\right)$$

iv.
$$x = 12.64911064 \approx 12.65$$
 m and $\theta = 13^{\circ}20'33'' = 13^{\circ}21'$

v. The maximum value of θ occurs when $x = \sqrt{a(a + 6)}$. Using the result from part a., we see that, because the square of the tangent equals the product of the intercepts of the secant, the goal posts and the point P from which the kick is taken lie on a circle, with PT a tangent

