NSW INDEPENDENT SCHOOLS

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1999

MATHEMATICS

3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time Allowed - Two hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- Write your student Name / Number on every page of the question paper and your answer sheets.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board approved calculators may be used.
- The answers to the seven questions are to be handed in separately clearly marked Question 1, Question 2, etc..
- The question paper must be handed to the supervisor at the end of the examination.

STUDENT NUMBER / NAME.....

3

3

Question 1 (Start a new page) Marks Two dice are rolled. If you know that at least one of the dice is a 5, what a. 2 is the probability of getting a total of 8? At an election, 30% of the voters favoured candidate A. If 7 voters are b. 2 selected at random, what is the probability that 4 of them favour A? The point C(-1, -4) divides the interval AB externally in the ratio 3:1. If C. 2 the coordinates of A are (3, 2), find the coordinates of B. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos^3 x \, dx$ using the substitution $u = \cos x$ đ. 3

Question 2 (Start a new page)

e.

Find the exact value of $\int_0^{\frac{\pi}{4}} \cos^2 \frac{1}{2} x \, dx$

a. Solve
$$\frac{1}{x+1} \ge 1 - x$$

b. Find $\int_0^{\frac{2}{5}} \frac{dx}{\sqrt{16 - 25x^2}}$

- c. The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x = 2at, y = at^2$.
 - i. Find M, the midpoint of PQ.
 - ii. Show that, if the gradient of PQ is constant, the locus of M is a line parallel to the y-axis.
- d. In the diagram, UZY, XZV, VYW and UXW are all straight lines. Given ZW bisects \(\angle XWY \) and \(\angle WUZ = \angle WVZ, \) prove that XW = YW.

Question 3 (Start a new page)

Marks

Show that $\frac{2x+1}{x+2} = 2 - \frac{3}{x+2}$

3

Hence or otherwise, find the exact value of $\int_{-\infty}^{\infty} \frac{2x+1}{x+2} dx$

b. Solve $\cos x - \sqrt{3}\sin x + 1 = 0$ for $0 \le x \le 2\pi$

3

i. Show that the solution of $x \ln x - 1 = 0$ lies between x = 1 and x = 2. C. 3

- ii. Using x = 2 as a first approximation, apply Newton's method once to obtain a better approximation. Give your answer to one decimal place.
- d. A mixed tennis team consisting of 2 men and 2 women is to be chosen from 5 men and 7 women.

3

- i. Find the probability that a particular woman is in the selected team.
- ii. If one of the original 5 men is selected as the captain of the team, find the probability that his brother, who was one of the original 5 men, is also in the team.

Question 4 (Start a new page)

Two circles, C_1 and C_2 , are members of the set of circles defined by the equation $x^2 + y^2 - 6x + 2ky + 3k = 0$, where k is real. a.

4

The centre of C_1 lies on the line x - 3y = 0 and C_2 touches the x-axis.

Find the equations of C_1 and C_2 .

The acceleration, a, of a particle is given in terms of its position, x, by the Ъ. equation $a = 2x^3 + 2x$.

4

- i. If v = 2 when x = 1, show that $v^2 = (1 + x^2)^2$
- ii. Show that, if $x = \frac{1}{\sqrt{3}}$ when t = 0, then $t = \frac{\pi}{6}$ when $x = \sqrt{3}$
- Prove by Mathematical Induction that $5^{2n} 1$ is divisible by 6 when n is C. a positive integer

Question 5 (Start a new page)

Marks

a. At 9 am, an ultralight aircraft flies directly over Daryl's head at 500 metres. It maintains a constant speed of 20 ms⁻¹ and a constant altitude.

5

If x is the horizontal distance travelled by the plane and θ is the angle of elevation from Daryl to the plane,

- i. show that $\frac{dx}{d\theta} = -500 \csc^2 \theta$.
- ii. Hence show that $\frac{d\theta}{dt} = -\frac{1}{25} \sin^2 \theta$.
- iii. Find the rate of change of the angle of elevation at 9:01 am.

b. Two groups of terrorists are 150 metres from their target.

7

The first group, Group A, is on the same horizontal level as the target and can fire their missiles in any direction at a speed of 50 ms⁻¹.

i. Show that Group A can hit the target and calculate the angle(s) at which their missiles are to be fired. [Use $g = 10 \text{ ms}^{-2}$]

The second group, Group B, is positioned in a building 30 metres above the horizontal level of the target and can fire their missile only horizontally through a small window and at 55 ms⁻¹.

ii. Determine whether Group B can hit their target. [Use $g = 10 \text{ ms}^{-2}$]

Question 6 (Start a new page)

Marks

a. The displacement, x cm, of an object from the origin is given by $x = 2 \sin t - 3 \cos t$, $t \ge 0$ where time, t, is measured in seconds.

5

7

- i. Show that the object is moving in Simple Harmonic Motion.
- ii. Find the amplitude of the motion.
- iii. At what time does the object first reach its maximum speed?
- b. A cup of soup at temperature $T^{\circ}C$ loses heat when placed in the lounge room. It cools according to the law:

$$\frac{dT}{dt} = k(T - T_0)$$

where t is the elapsed time in minutes and T_0 is the temperature of the room in degrees centigrade.

- i. Show that the equation $T = T_0 + Ae^{kt}$ satisfies the above law of cooling.
- ii. A cup of soup at 95°C is placed in the freezer at -10°C for 5 minutes and cools to 65°C. Find the exact value of k
- iii. The same cup, at 65° C, is then taken into the lounge room where the surrounding temperature is 26° C. Assuming k remains the same, find, to the nearest degree, the temperature of the soup after another 5 minutes.

STUDENT NUMBER / NAME.....

Question 7 (Start a new page)

Marks

a. Find the constant term in the expansion of $\left(3x - \frac{1}{x^2}\right)^6$

3

b. i. Solve the equation $x^4 + x^2 - 1 = 0$, giving your answer(s) to two decimal places.

9

ii. On the same axes, draw the graphs of $y = \tan^{-1} x$ and $y = \cos^{-1} x$, showing all important features. Mark the point, P, where the curves intersect.

iii. Show that, if $\tan^{-1} x = \cos^{-1} x$, then $x^4 + x^2 - 1 = 0$. Hence find the coordinates of P.

iv. Find to two decimal places the area enclosed by the curves and the y-axis.

1999 NSW INDEPENDENT TRIAL EXAMS

MATHEMATICS

3 UNIT TRIAL 1999

SUGGESTED ANSWERS

DIa. Possibilities are

.'. Probability of total of $8 = \frac{2}{11}$

Then
$$P(X=r) = {7 \choose r} \left(\frac{3}{10}\right)^r \left(\frac{7}{10}\right)^{7-r}$$

$$+ P(X=4) = \mathcal{L}_{4} \left(\frac{3}{10}\right)^{4} \left(\frac{7}{10}\right)^{3}$$

$$x = \frac{kx_2 + lx_1}{k + l}$$
 $y = \frac{ky_2 + ly_1}{k + l}$

$$-1 = \frac{3 \times x_2 + 1 \times 3}{-3 + 1} \qquad -4 = \frac{-3 \times y_2 + 1 \times 2}{-3 + 1}$$

$$2 = -3x_2 + 3$$
 $8 = -3y_2 + 2$

$$x_2 = \frac{1}{3}$$
 $y_2 = -$
 $B(\frac{1}{3}, -2)$

$$B(\frac{1}{3}, -2)$$

d.
$$u = \cos x$$
 $du = -\sin x \cdot dx$

If $x = \frac{\pi}{2}$, $u = 0$

If $x = \frac{\pi}{3}$, $u = \frac{1}{2}$
 $\therefore I = \int_{-\infty}^{\infty} -u^{3} du$
 $= \left[\frac{u^{4}}{4} \right]_{0}^{-\infty}$
 $= \frac{5}{4} - 0 = \frac{1}{64}$

$$e. \int_{0}^{\pi_{74}} \cos^{2} \frac{1}{2} x \cdot dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} |+ \cos x \, dx$$

$$= \frac{1}{2} \left[x + \sin x \right]_{0}^{\pi_{74}}$$

$$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{\sqrt{2}} \right)$$

These suggested answers/marking schemes are issued as a guide only -offerred as an assistance in constructing your own marking format (individual teachers/schools find many other acceptable responses)

MATHS 3U ANSWERS - 1999
$$|2a. \frac{1}{x+1} > 1-x$$

Critical points at
$$x=-1$$
 and $\frac{1}{x+1} = 1-x$

$$| = |-\chi^2$$

Test
$$\chi=-2$$
 False
Test $\chi=-1$ => $\frac{1}{2}$ > 0 ... True

b.
$$\int_{0}^{2/5} \frac{dx}{\sqrt{16-25x^{2}}}$$

$$= \int_{0}^{2/5} \frac{dx}{5\sqrt{\frac{16}{25}-x^{2}}}$$

$$= \frac{1}{5} \left[Am^{-1} \frac{x}{4/5} \right]_{0}^{2/5}$$

$$= \frac{1}{5} \left[Am^{-1} \frac{5x}{4} \right]_{0}^{3/5}$$

$$= \frac{1}{5} \left[Am^{-1} \frac{1}{2} - Am^{-1} 0 \right]$$

$$= \frac{1}{5} \cdot \overline{\frac{1}{6}} = \frac{\overline{a}}{30}$$

c. (i)
$$M\left(a(p+q), a(\frac{p^2+q^2}{2})\right)$$

Then, for the point M,

$$x = a(p+q)$$
 $= a \cdot 2k$
 $x = 2ak$

Since a and k are constant,

the locus of M is a line parallel

to the y-axis

d.
$$\angle U = \angle V$$
 (gwen)

 $\angle UZX = \angle VZY$ (vertically oppo(E)

Now $\angle ZXW = \angle UZX + \angle U$ (exterior angle of

trangle)

and $\angle ZYW = \angle VZY + \angle V$ (dotto)

 $\angle ZXW = \angle ZYW$ (equal to sum of

equal angles)

In $\triangle XZW + \triangle YZW$,

 $\angle ZW = \angle ZYW$ (above)

 $\angle ZXW = \angle ZYW$ (above)

$$\angle XWZ = \angle YWZ$$
 (gwen ZW breechs $\angle YWX$)

 $\therefore \Delta XZW \equiv \Delta YZW$ (AAS)

and $XW = YW$

MATHS 3U ANSWERS - 1999

$$\begin{array}{rcl}
\sqrt{3} & (3) & (3$$

$$\frac{1}{x} \int_{0}^{1} \frac{2x+1}{x+2} dx$$

$$= \int_{0}^{1} 2 - \frac{3}{x+2} dx$$

$$= \left[2x - 3\ln(x+2)\right]_{0}^{1}$$

$$= (2 - 3\ln 3) - (0 - 3\ln 2)$$

$$= 2 + 3\ln(\frac{2}{3})$$

(b) Let
$$\cos x - \sqrt{3} \sin x = A \cos (x + \theta)$$

= $A \cos x \cos \theta - A \sin x \sin \theta$

then $A\cos\theta = 1$ $A\cos\theta = \sqrt{3}$

=>
$$+a_{11}\theta = \sqrt{3}$$
 and $\theta = \frac{\pi}{3}$

and A = 2

$$(2\cos\left(x+\frac{\pi}{3}\right)+1=0$$

$$\cos\left(x+\frac{\pi}{3}\right)=-\frac{1}{2}$$

$$\chi + \frac{\pi}{3} = \dots + \frac{\pi}{3}, \frac{5\pi}{3}, \dots$$

 $\chi = \pi$, $\frac{4\pi}{3}$ in gwa domai

$$\xi(i)$$
 let $f(x) = x \ln x - 1$
 $f(i) = 1 \cdot \ln 1 - 1 < 0$
 $f(x) = 2 \ln x - 1 > 0$

i. a solutiai exists between x = 14x = 2 (assuming f(x) is continuous)

$$f'(x) = x \cdot \frac{1}{x} + \ln x = \ln x + 1$$
By New+an's method,
$$x_1 = x - \frac{f(x)}{f'(x)}$$

$$= x - \frac{x \ln x - 1}{\ln x + 1}$$
If $x = 2$, $x_1 = 2 - \frac{2 \ln 2 - 1}{\ln 2 + 1}$

$$= + 1.77184832$$

$$= 1.8$$

(ii) Captain is openified, so the number of possible teams is $4C_1 \times 7C_2 = 84$ No. of teams with his brother is $7C_2 = 21$.'. Probability of captain and brother 21 = 21 = 1

or with the captain as openified, the probability that his brother's chosen from the cemaining four men is I

MATHS 3U ANSWERS - 1999

$$0.4(a)$$
 $2^{2}+y^{2}-6x+2ky+3k=0$
Completing the squares:
 $(x-3)^{2}+(y+k)^{2}=k^{2}-3k+9$

If the centre
$$(3,-k)$$
 is on the line $x-3y=0$, then $3-3x-k=0 \Rightarrow k=-1$
 $-1 \cdot C_1 \cdot (x-3)^2 + (y-1)^2 = 13$

If
$$C_2$$
 touches the x -axis, the radius is $\frac{k}{\sqrt{k^2-3k+9}} = \frac{k}{\sqrt{k^2-3k+9}} = \frac{k^2}{\sqrt{(x-3)^2+(y+3)^2}} = 9$

$$(b_{1}(1))d_{1}(\frac{1}{2}v^{2}) = 2x^{3} + 2x$$

$$1 + \frac{1}{2}v^2 = \frac{1}{2}x^4 + x^2 + C$$

If
$$V=2$$
, $X=1$
 $\therefore \frac{1}{2} \cdot 2^{2} = \frac{1}{2} \cdot 1 + 1 + C \Rightarrow C = \frac{1}{2}$
 $\forall \frac{1}{2} \cdot V^{2} = \frac{1}{2} \cdot X^{4} + X^{2} + \frac{1}{2}$
 $V^{2} = X^{4} + 2X^{2} + 1$
 $V^{2} = (X^{2} + 1)^{2}$

(ii) so
$$V = \pm (x^2+1)$$

but $V = 2 (70)$ when $X = 1$
-'. $V = + (x^2+1)$

$$\frac{dt}{dx} = \frac{1}{x^2 i}$$
so $t = \frac{1}{x^2 i}x + c$

(c) (et
$$S(n)$$
: $5^{2n}-1=6I$, where I is an integer.

$$S(1)$$
: Ltts = $5^2 - 1 = 24 = 6 \times 4$

Consider
$$S(k+)$$
:
LHT = $5^{2k+2}-1$
= $5^{2k}.5^2-1$
= $25(5^{2k}-1)-1+25$
= $25.6I+24$ by $S(k)$
= $6[25I+4]$

Now I to integer, - 25I+4 to integer. Hence, if S(k) is tone, S(k+1) is true But S(1) true, so S(2) true, and then S(3) is true and so on for all unteger values of n.

MATHS 34 ANSWERS - 1999

$$35(e)(i) \qquad \lambda \qquad \chi \qquad P$$

$$500 \qquad \qquad 0$$

$$15 \qquad \chi = 500 \cot \theta$$

$$\frac{dx}{d\theta} = -500 \csc^2\theta$$

$$(\vec{x}) \frac{d\theta}{dt} = \frac{d\theta}{dn} \times \frac{dn}{dt}$$

$$= \frac{1}{-500 \cos^2{\theta}} \times 20$$

$$= -\frac{1}{25} \sin^2{\theta}$$

$$\frac{d\theta}{dt} = -\frac{1}{25} \times \left(\frac{5}{15}\right)^{2}$$

=
$$-\frac{1}{169}$$
 degrees/sec.

b) (i)
$$\dot{x} = 0$$
 $\dot{y} = -10$
 $\dot{x} = e_1$ $\dot{y} = -10t + c_2$

hitially
$$\dot{x} = 50 \cos \alpha$$
 . $\dot{x} = 50 \cos \alpha$ Now when $y = 0$, $-5t^2 + 30 = 0$ and $\dot{y} = 50 \sin \alpha$. $\dot{y} = -10t + 50 \sin \alpha$. $\dot{t}^2 = 6$

$$\chi = 50t \mod + C_3$$
 $y = -5t^2 + 50t \sin x + C_4$ At $t = \sqrt{6}$, $\chi = 55\sqrt{6}$
Since $\chi = 0$ when $t = 0$, and $y = 0$ when $t = 0$ \therefore y soup B cannot reach the target $\therefore \chi = 50t \mod \therefore y = -5t^2 + 50t \sin x$

(ii)
$$\ddot{z} = 0$$
 $\ddot{y} = -10$
 $\dot{x} = C_1$ $\dot{y} = -10t + C_2$
Initially, $\dot{x} = 55\cos x$, $\dot{y} = 55\cos x$
 $\dot{x} = 55\cos x$ $\dot{y} = -10t + 55\sin x$
 $\dot{x} = 55$ $\dot{y} = -10t$ succe $x = 0$

.' \ = 18°26' or 71°29'

Now when
$$y=0$$
, $-5t^2+30=0$
.'. $t^2=6$
 $4 t = \sqrt{6}$

MATHS 34 ANSWERS - 1999

$$\chi = 2 \text{ sunt} - 3 \text{ cost}$$

$$\chi = 2 \text{ cost} + 3 \text{ sunt}$$

$$\dot{\chi} = -2 \text{ sunt} + 3 \text{ cost}$$

$$= -(2 \text{ sunt} + 3 \text{ cost})$$

$$= -x$$

. notion is simple harmonic.

(ii) Amplitude =
$$\sqrt{2^2 + 3^2}$$

= $\sqrt{13}$ cm

(iii)
$$\ddot{x} = 2\cos t + 3 \sin t$$

 $\ddot{x} = -2 \sin t + 3 \cos t$
Max velocity when $\ddot{x} = 0$
 $-2 \sin t + 3 \cos t = 0$
 $3 \cos t = 2 \sin t$
 $\frac{3}{2} = \tan t$
 $t = 0.983$, $4.1243....etc$
· reaches maximum velocity
when $t = 0.983$

(b)(i)
$$T = T_0 + Ae^{kt}$$

$$\frac{dT}{dt} = k \cdot Ae^{kt}$$

$$\frac{dT}{dt} = k \cdot (T - T_0)$$

(ii) When
$$t=0$$
, $T=95$, $T_0=-10$
 $\Rightarrow A = 105$
When $t=5$, $T=65$
 $\therefore 65 = -10 + 105e^{5k}$
 $e^{5k} = 75/105 = 5/7$

MATHS 34 ANSWERS - 1999
Q7(a)
$$(3x - \frac{1}{x^2})^6 = \sum_{r=0}^{6} (C_r (3x)^{6-r} (-\frac{1}{x^2})^r)^r$$

Typical term,
$$T_r$$
, is
$$T_r = {}^{6}C_r 3^{6-r} \cdot \chi^{6-r} \cdot (-1)^r \cdot (\chi^{-2})^r$$

$$= {}^{6}C_r 3^{6-r} \cdot (-1)^r \cdot \chi^{6-3r}$$

Constant term when
$$6-3r=0$$

 $r=2$
then $T_2 = {}^{6}C_{2} \, {}^{3} \, {}^{4} \, {}^{(-1)}^{2}$
 $= 1215$

byi)
$$x^4 + x^2 - 1 = 0$$

 $x^2 = -1 \pm \sqrt{1 - 4 \times 1 \times -1}$
 $= -1 \pm \sqrt{5}$

$$-1 \cdot \chi^{2} = -\frac{1-\sqrt{5}}{2}$$
 or $-\frac{1+\sqrt{5}}{2}$

$$\chi = 0.618033988$$

 $\chi = \pm 0.786151377$
 $= \pm 0.79$

At P,
$$\cos^{-1}x = \tan^{-1}x = \alpha$$

.-at P $\cos^{-1}x = \alpha + x = \cos \alpha$
But $\cos \alpha = \frac{1}{\sqrt{1+x^{2}}}$ (from diagram)

$$\chi = \frac{1}{\sqrt{1+x^2}}$$

Squaring,
$$\chi^2 = \frac{1}{1+\chi^2}$$

+ $\chi^4 + \chi^2 = 1$

$$x' + x' - 1 = 0$$

-' $x = 0.79$ (from (i))

and
$$y = tan^{-1} 0.79 = 0.6686$$

so $P(0.79, 0.67)$