NSW INDEPENDENT SCHOOLS

2015 Higher School Certificate Preliminary Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in Question 11 14
- Write your student number and/or name at the top of every page

Total marks - 70

Section I - Pages 3 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-9

60 markš

Attempt Questions 11 - 14

Allow about 1 hour 45 minutes for this

section

This paper MUST NOT be removed from the examination room

Student name /	number	

Marks

Section I

10 Marks Attempt Questions 1-10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

1

In the diagram, AB is a chord of a circle with centre O such that $\angle AOB = 80^{\circ}$. C is a point on the circle such that BC = BA. What is the size of $\angle ABC$?

- (A) 90
- (B) 100°
- (C) 110°
- (D) 120°
- 2 A(-2,5) and B(4,-1) are two points. What are the coordinates of the point P(x,y) that divides AB internally in the ratio 2:1?
 - (A) (-5,8)
 - (B) (0,3)
 - (C) (2.1)
 - (7.-4)
- 3 If $y = (x^3 + 1)^5$, which of the following is an expression for $\frac{dy}{dx}$?
 - (A) 3x
 - (B) $5(3x^2)^6$
 - (C) $5(x^3+1)$
 - (D) $15x^2(x^3+1)$

Student name / n	umber	

Marks

- 4 What is the size of the acute angle between the lines 2x y = 0 and x + y = 0, correct to the nearest degree?

 - (B) 19°

(A)

18°

- (C) 71°
- (D) 72°
- 5 Which of the following is an expression for cos(A-B)-cos(A+B)?
 - (A) $2\sin A \sin B$
- (B) $2\cos A\cos B$
- (C) $-2\cos A\cos B$
- (D) $-2\sin A \sin B$
- 6 If $f(x) = \frac{x}{2x-1}$, which of the following is an expression for f'(x)?
 - $(A) \qquad \frac{-2}{\left(2x-1\right)^2}$
 - $(B) \qquad \frac{-1}{\left(2x-1\right)^2}$
 - $(C) \qquad \frac{1}{\left(2x-1\right)^2}$
 - (D) $\frac{2}{(2x-1)^2}$
- 7 The equation $x^3 3x^2 2x + 1 = 0$ has roots α , β and γ . What is the value of $\alpha^2 + \beta^2 + \gamma^2$?
- (A) 3
- (B) 5
- (C) 9
- (D) 1

Student name /	

Marks

8 Which of the following is an expression for $\frac{(n+2)!-n!}{(n+1)!}$?

 $r \frac{(n+2)!-n!}{(n+1)!}?$

- $A) \qquad \frac{n^2 + 3n + 1}{n + 1}$
- $\text{(B)} \qquad \frac{n^2 + 3n + 2}{n + 1}$
- $(C) \qquad \frac{n^2 + 2n + 2}{n + 1}$
- $(D) \qquad \frac{n^2 + 2n + 3}{n + 1}$
- 9 The equation $\tan^2 \theta + b \tan \theta + c = 0$ has roots $\tan \alpha$ and $\tan \beta$. Which of the following is an expression for $\tan(\alpha + \beta)$?
 - $(A) \quad \frac{-b}{1+c}$
 - (B) $\frac{-b}{1-c}$
 - (C) $\frac{b}{1-c}$
- (D) $\frac{b}{1+c}$

In the diagram, $T(2at, at^2)$, where a > 0,

is a point on the parabola $x^2 = 4ay$ with focus F(0, a) and directrix y = -a.

M is the foot of the perpendicular from T

to the directrix and TM cuts the x axis at N.

- (A) TM = TF
- (B) TN + FO = TF
- (C) $TM = a(t+1)^2$
- (D) $TF + NO = a(t+1)^2$

Student name / number	

Marks

3

Section II

60 Marks

Attempt Questions 11-14.

Allow about 1 hour and 45 minutes for this section.

Answer the questions in writing booklets if provided, or on your own paper.

Start each question in a new booklet, or on a new page.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a separate writing booklet.

- (a) P(x) is an odd polynomial function whose graph passes through the point (1,3). Find the remainder when P(x) is divided by (x+1).
- (b) A(-3,6) and B(1,2) are two points. Find the coordinates of the point P(x,y) that divides AB externally in the ratio 3:1.
- (c) Find the number of ways in which 3 boys and 3 girls can line up in a queue so that the first and last in the queue are both boys.
- (d) Solve the equation $\tan 2x + \tan x = 0$ for $0^{\circ} < x < 180^{\circ}$.
- (e) The Great Pyramid of Egypt has a horizontal square base ABCD of side 230 m. The diagonals of its base intersect at O. The top T of the pyramid is 147 m vertically above O. Find the angle of elevation of T from A, giving the answer correct to the nearest degree.
- (f) The normal to the parabola $x^2 = 4ay$ at the point $T(2at, at^2)$ on the parabola has equation $x+ty-2at-at^3=0$. (Do NOT prove this result.) The normal cuts the x axis at X and the y axis at Y. If T is the midpoint of XY, find the coordinates of T.

Student name /	number

Marks

2

2

3

1

2

Question 12 (15 marks)

Use a separate writing booklet.

- (a) The polynomial P(x) is such that P(x) = (x-1)(x-2)Q(x) + 3x + k for some polynomial Q(x) and some constant k. If the remainder is -1 when P(x) is divided by (x-1), find the remainder when P(x) is divided by (x-2).
- (b) Find the value of m, where m > 0, such that the acute angle between the lines y = 2x and y = mx is 45° .
- (c) A multiple choice test contains 5 questions. In each question there are 4 answers, one of which is correct, the other three being incorrect. If all 5 questions are attempted, find the number of ways in which exactly 3 questions can be answered correctly.
- (d) Giving your answers correct to the nearest degree, use the substitution $t = \tan \frac{x}{2}$ to solve the equation $\cos x + 2\sin x = -1$ for $0^{\circ} \le x \le 360^{\circ}$.
- (e)(i) $T(2at, at^2)$ is a point on the parabola $x^2 = 4ay$. Use differentiation to show that the tangent to the parabola at T has gradient t.
- (ii) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The angles of inclination to the positive x axis of the tangents to the parabola at P and Q are θ and 2θ respectively. Express q in terms of p.

(f)

In the diagram, ABCD is a cyclic quadrilateral. AB produced and DC produced meet at E. AD produced and BC produced meet at F. $\angle BEC = x^{\circ}$, $\angle CFD = 2x^{\circ}$ and $\angle DAB = 3x^{\circ}$. Copy the diagram. Find the value of x, giving reasons.

Use a separate writing booklet.

Student name / number

Question 14 (15 marks)

2

Marks

3

Show that $\frac{1+\tan x}{1-\tan x} = \frac{1+\sin 2x}{\cos 2x}$.

The equation $x^3 + bx^2 + cx + d = 0$ has roots α , α^3 and $\frac{1}{\alpha}$, where $\alpha \neq 0$. 3 Show that $b^3d-c^3=0$.

Solve the inequality $\frac{5x}{x^2+1} \le x$.

6 boys and 5 girls are available for selection in a mixed team of 7 players. Find the number of ways that the team can be chosen if it has to contain at least 3 girls and at least 3 boys.

(e)

In the diagram, MAN is tangent to the circle at A. BC is a chord of the circle such that $BC \parallel MAN$. D is a point on the circle. Copy the diagram. Show that AD bisects \(\alpha BDC \).

Question 13 (15 marks)

Use a separate writing booklet.

Solve the equation $2\sin(x-30^\circ) = \sqrt{2}$ for $0^\circ \le x \le 360^\circ$.

Consider the polynomial $P(x) = 2x^3 - 5x^2 - 4x + 3$.

(i) Show that (x+1) is a factor of P(x).

(ii) Solve the equation P(x) = 0.

Find the number of ways in which the letters of the word FORMULA can be arranged in a line

(i) without restriction.

2

Marks

(ii) so that the 4 consonants are all next to each other and the 3 vowels are all next to each other.

(d)

In the diagram, AB is a diameter of a circle with centre O. C and D are points on the circle. OD cuts AC at M. The tangent to the circle at D cuts BC produced at N. Copy the diagram. Show MCND is a cyclic quadrilateral.

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$.

(i) Show that the chord PQ has equation 2y - (p+q)x + 2apq = 0.

(ii) If P and Q move on the parabola such that the chord PQ always passes through the point (0,4a) on the y axis, show that OP and OQ are always perpendicular to each other.

Mathematics Extension 1

Marking Guidelines

Section 1 Questions 1-10 (1 mark each)

Question	Answer	Solution	Outcomes
1	В	In $\triangle AOB$, $AO = BO$ (radii) $\therefore \angle OAB = \angle OBA = 50^{\circ}$ ($\angle sum \triangle is 180^{\circ}$) But $\triangle COB = \triangle AOB$ (SSS) $\therefore \angle OBC = \angle OBA = 50^{\circ}$ $\therefore \angle ABC = \angle OBA + \angle OBC = 100^{\circ}$	PE3
2	С	$x = \frac{2 \times 4 + 1 \times (-2)}{2 + 1} = 2$ $y = \frac{2 \times (-1) + 1 \times 5}{2 + 1} = 1$	P4
3	D	Using the chain rule, $\frac{dy}{dx} = 5(x^3 + 1)^4 \cdot 3x^2 = 15x^2(x^3 + 1)^4$	PE5
4	D	$\tan \theta = \left \frac{2 - (-1)}{1 + 2 \times (-1)} \right = 3$ $\therefore \theta \approx 72^{\circ}$ (to the nearest degree)	P4
5	A	$\cos(A-B) = \cos A \cos B + \sin A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\therefore \cos(A-B) - \cos(A+B) = 2\sin A \sin B$	P4
6	В	Using the quotient rule, $f'(x) = \frac{1 \cdot (2x-1) - x \cdot 2}{(2x-1)^2} = \frac{-1}{(2x-1)^2}$	PE5
7	D	$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 3^2 - 2 \times (-2) = 13$	PE3
8	A	$\frac{(n+2)!-n!}{(n+1)!} = \frac{n!\{(n+1)(n+2)-1\}}{n!(n+1)} = \frac{n^2+3n+1}{n+1}$	PE3
9	В	$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \frac{-b}{1 - c}$	P4, PE3
10	С	$TM = TF$ (locus definition of parabola) A correct $FO = NM = a$ $\therefore TN + FO = TN + NM = TM = TF$ B correct $TM = at^2 + a = a(t^2 + 1) \neq a(t + 1)^2$ since $t \neq 0$ C incorrect $TF + NO = TM + NO = at^2 + a + 2at = a(t^2 + 2t + 1) = a(t + 1)^2$ D correct	PE3

Section II

Ouestion 11

a. Outcomes assessed: PE3

Marks
1
4
-

Answer

(1,3) lies on the graph of P(x) $\therefore P(1)=3$. Since P(x) is odd, remainder is P(-1)=-P(1)=-3.

Q11 (cont)

b. Outcomes assessed: P4

•	Marking Guidelines	
	Criteria	Marks
• finds x coordinate of P		1
• finds y coordinate of P		

Answer

$$x = \frac{3 \times 1 + (-1) \times (-3)}{3 + (-1)} = 3$$
 $y = \frac{3 \times 2 + (-1) \times 6}{3 + (-1)} = 0$ Point is $P(3,0)$

c. Outcomes assessed: PE3

Marking Guidelines		
Criteria	Mar	·ks
• counts the arrangements of the first and last	1	
• multiplies by the arrangements of the remaining 4		

Answer

The first and last in the queue can be selected from the boys in 3×2 ways. The remaining positions can be filled in 4! ways. Hence the number of arrangements is $3\times 2\times 4! = 144$

d. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
• writes the equation in terms of tanx	1
• solves for tan x	1
• solves for x	1 1

Answer

$$\tan 2x + \tan x = 0, \quad 0^{\circ} < x < 180^{\circ}$$

$$\frac{2 \tan x}{1 - \tan^{2} x} + \tan x = 0 \qquad \tan x = 0 \qquad or \qquad \tan^{2} x = 3$$

$$\tan x = \pm \sqrt{3}$$

$$\tan x \left\{ 2 + \left(1 - \tan^{2} x\right)\right\} = 0 \qquad 0^{\circ} < x < 180^{\circ} \qquad \therefore x = 60^{\circ}, \quad 120^{\circ}$$

e. Outcomes assessed: P4, PE6

Marking Guidelines

War king Guidennes	
Criteria	Marks
• finds the distance AO	1
• writes an expression for the tangent of the angle of elevation using right triangle AOT	1 1
• calculates the angle of elevation	1 1

Answer

The diagonal of the square base has length $230\sqrt{2}$ metres.

:. $AO = 115\sqrt{2}$. (Diagonals of a square bisect each other)

$$\tan \theta = \frac{147}{115\sqrt{2}}$$
 $\therefore \theta \approx 42^{\circ}$ is angle of elevation of T from A.

Q11(cont)

f. Outcomes assessed: PE4

Marking Guidelines	
Criteria	Marks
• finds the coordinates of either X or Y	1
• uses the fact that T is the midpoint of XY to write an equation for t	1
• solves for t and states the coordinates of T in terms of a.	1

Answer

$$x+ty-2at-at^{3}=0 y=0 \Rightarrow x=at(2+t^{2}) \therefore X(at(2+t^{2}),0)$$

$$x=0 \Rightarrow y=a(2+t^{2}) Y(0,a(2+t^{2}))$$

$$T(2at,at^{2}) \text{ is the midpoint of } XY.$$

$$\therefore at^{2}=\frac{1}{2}a(2+t^{2})$$

$$2t^{2}=2+t^{2} \therefore T(2a\sqrt{2},2a) \text{ or } T(-2a\sqrt{2},2a)$$

$$t^{2}=2$$

Question 12

a. Outcomes assessed: PE3

Marks
1 1
1

Answer

$$P(x) = (x-1)(x-2)Q(x) + 3x + k P(1) = -1 \Rightarrow 3 + k = -1 \therefore k = -4$$
Then $P(x) = (x-1)(x-2)Q(x) + 3x - 4 \therefore P(2) = 6 - 4 = 2 \text{and required remainder is 2.}$

b. Outcomes assessed: P4

Mar	king Guidelines	
	Criteria	Marks
• writes an equation for m in terms of absolute	values	1
• solves this equation for positive m		1

Answer

c. Outcomes assessed: PE3

Marking Guidelines	
Criteria	Marks
• counts the number of combinations of three questions answered correctly from five	1
• for each such combination, counts the number of ways of answering those remaining incorrectly	1

Answer

$${}^{5}C_{3} \times 3 \times 3 = 90$$

Q12 (cont)

d. Outcomes assessed: P4

Marking Guidelines	
Criteria	Marks
• for angles other than 180°, writes the equation in terms of t and solves	1 1
• finds corresponding solution for x	1
• tests 180° and finds it is also a solution	

Answer

$\cos x + 2\sin x = -1 , 0$	$^{\circ} \le x \le 360^{\circ}$. For $x \ne 180^{\circ}$, let $t = \tan \frac{x}{2}$.	•
$\frac{1-t^2}{1+t^2} + \frac{4t}{1+t^2} = -1$	$\tan \frac{x}{2} = -\frac{1}{2}$, $0^{\circ} \le \frac{x}{2} \le 180^{\circ}$	For $x = 180^{\circ}$:
$1 - t^2 + 4t = -1 - t^2$	$\frac{x}{2} \approx 180^{\circ} - 26.565^{\circ}$	$\cos 180^{\circ} + 2\sin 180^{\circ} = -1 + 0$
$t = -\frac{1}{2}$	x ≈ 306°52′	=-1

Hence solutions are $x \approx 306^{\circ}52'$ or $x = 180^{\circ}$

e. Outcomes assessed: PE4

• expresses q in terms of p

Marking Guidelines	
Criteria	Marks
i • proves the result using differentiation	1
ii • writes $\tan \theta$, $\tan 2\theta$ in terms of p and q	1

Answer

i.	x = 2at	$\frac{dx}{dt} = 2a$	$\therefore \frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt} = \frac{2at}{2a} = t$
	$y = at^2$	$\frac{dy}{dt} = 2at$	Gradient of tangent at T is t

ii. $\tan \theta = p$ and $\tan 2\theta = q$ $\therefore q = \frac{2p}{1 - p^2}$

f. Outcomes assessed: PE2, PE3

Marking Guidelines	
Criteria	Marks
• finds either $\angle FDC$ or $\angle ADC$ in terms of x	1
• finds $\angle ABC$ in terms of x	
• writes and solves an equation for x	l

Answer

$\angle FDC = 4x^{\circ}$	(Exterior ∠ of ∆ADE is equal
	to sum of interior opposite ∠'s)
$\therefore \angle ABC = 4x^{\circ}$	(Exterior ∠ of cyclic quad. ABCD
	is equal to interior opposite \angle)
$\therefore 9x = 180$	(\(\alpha\) sum of \(\Delta ABF\) is 180°)
$\therefore x = 20$. ,

Question 13

a. Outcomes assessed: P4

Marking Guidelines	
Criteria	Marks
• rearranges equation and recognises exact trigonometric ratio, stating one value for $x-30^{\circ}$	1
• states both solutions for x	1

Answer

$2\sin(x-30^\circ) = \sqrt{2}$, $0^\circ \le x \le 360^\circ$	$x-30^{\circ}=45^{\circ}$,	135°
$\sin(x-30^\circ) = \frac{1}{\sqrt{2}}$	$x = 75^{\circ},$	16 5°

b. Outcomes assessed: PE3

Marking (Guidelines
Crito	ria .

Criteria	Marks_
i • applies the factor theorem	1
ii • completes the factorisation of $P(x)$	1.
• writes down the three solutions	1
- WIICE GOWN the three solditions	

Answer

i.
$$P(x) = 2x^3 - 5x^2 - 4x + 3$$

$$P(-1) = -2 - 5 + 4 + 3 = 0$$

$$\therefore P(-1) = -2 - 5 + 4 + 3 = 0 \qquad \qquad \therefore (x+1) \text{ is a factor of } P(x).$$

ii.
$$P(x)=(x+1)(2x^2-7x+3)$$

= $(x+1)(2x-1)(x-3)$

$$\therefore P(x) = 0$$
 has solutions $x = -1, \frac{1}{2}, 3$

c. Outcomes assessed: PE3

Mauldua Cuidalinas

Marking Guidenies		
Criteria		Marks
i • calculates the number of arrangements		1
ii • writes numerical expression with factors 4! and 3!	•	1
• includes the factor 2 and calculates the product		1

Answer

- i. 7!=5040
- ii. $2 \times 4! \times 3! = 288$

d. Outcomes assessed: PE2, PE3

Mayldna Cuidolines

Marking Guidennes	
Criteria	Marks
• explains right angle at C	1
• explains right angle at D	1
• applies an appropriate test for a cyclic quadrilateral	

Answer

$\angle ACB = 90^{\circ}$	
40DM 000	

(L. in semi-circle is a right angle)

 $\angle ODN = 90$

(tangent 1. to radius drawn to

point of contact)

: MCND is cyclic (exterior \(\subseteq equal to interior \) opposite ∠)

O13 (cont)

e. Outcomes assessed: PE4

Marking	Guidelines

Criteria	Marks
	1 1
i • finds gradient of PQ	
• finds equation of PQ	1
ii • finds product pq if PQ passes through given point	1
• finds product of gradients of OP and OQ in terms of p and q to deduce result	1 1

Answer

i.
$$m_{PQ} = \frac{a(p^2 - q^2)}{2a(p-q)}$$
 $\therefore PQ$ has equation $y - ap^2 = \frac{1}{2}(p+q)(x-2ap)$

$$= \frac{1}{2}(p+q)$$
 $2y - (p+q)x + 2apq = 0$

ii.
$$(0,4a)$$
 lies on $PQ \Rightarrow 8a+2apq=0 \Rightarrow pq=-4$
$$m_{OP} = \frac{ap^2}{2ap} = \frac{1}{2}p \qquad \therefore m_{OP} \cdot m_{OQ} = \frac{1}{4}pq = -1 \text{ and } OP \perp OQ \text{ if } (0,4a) \text{ lies on } PQ.$$

Question 14

a. Outcomes assessed: P4

Marking Guidelines	
Criteria	Marks
• uses expressions for $\cos 2x$ and $\sin 2x$ in terms of $\cos x$ and $\sin x$	1]
• completes the proof using appropriate trigonometric identities	11

$$\frac{1+\sin 2x}{\cos 2x} = \frac{\left(\cos x + \sin x\right)^2}{\cos^2 x - \sin^2 x} = \frac{\cos x + \sin x}{\cos x - \sin x} = \frac{1+\tan x}{1-\tan x}$$

b. Outcomes assessed: PE3

Marking Guidelines		
Criteria .	Marks	
• writes expressions for the coefficients in terms of α	1	
• writes the quotient of c and b in terms of α	1	
• completes proof by eliminating α		

$$x^3 + bx^2 + cx + d = 0$$
 has roots α , α^3 , $\frac{1}{\alpha}$ ($\alpha \neq 0$)

$$d = -\alpha \cdot \alpha^{3} \cdot \frac{1}{\alpha}$$

$$c = \alpha \cdot \alpha^{3} + \alpha^{3} \cdot \frac{1}{\alpha} + \frac{1}{\alpha} \cdot \alpha$$

$$b = -\left(\alpha + \alpha^{3} + \frac{1}{\alpha}\right)$$

$$d = -\alpha^{3}$$

$$c = \alpha^{4} + \alpha^{2} + 1$$

$$b = -\frac{1}{\alpha}(\alpha^{4} + \alpha^{2} + 1)$$

$$\therefore \left(\frac{c}{b}\right)^3 = \left(-\alpha\right)^3 = -\alpha^3 = d . \quad \text{Hence } c^3 = b^3 d . \quad \therefore b^3 d - c^3 = 0$$

Q14 (cont)

c. Outcomes assessed: PE3, PE6

Marking	Guidelines
Marking	CTUILLEMES

Milling Galaconer	
Criteria	Marks
• rearranges to form a polynomial inequality	i
• writes one inequality for x	1
writes the second inequality and indicates how they are to be combined	11

Answer

d. Outcomes assessed: PE3

Marking Guidelines

Mar Mar Candemies	
Criteria	Marks
• writes an expression for the number of ways of selecting 4 boys and 3 girls	1 1
• writes an expression for the number of ways of selecting 3 boys and 4 girls	1
adds these expressions and calculates the possible number of combinations	1

Answer

$${}^{6}C_{4} \times {}^{5}C_{3} + {}^{6}C_{3} \times {}^{5}C_{4} = 15 \times 10 + 20 \times 5 = 250$$

e. Outcomes assessed: PE2, PE3

Marking Guidelines

	Marking Guidelines		
	Criteria	•	Marks
• deduces ∠CDA = ∠CBA			1 1
• deduces ∠CBA = ∠MAB			1 1
• deduces $\angle MAB = \angle ADB$		•	1
• completes the proof			

Answer

Join AB and AC.

 $\angle MAB = \angle ADB$

 $\angle CDA = \angle CBA$ (\angle

(L's subtended at the circumference

by the same arc AC are equal)
(alternate ∠'s within parallel lines

 $\angle CBA = \angle MAB$ (alternate \angle are equal)

(\(\subseteq \text{between tangent and chord BA} \)

drawn to point of contact is equal to \(\subseteq \text{subtended by chord BA in the} \)

alternate segment)

 $\therefore \angle CDA = \angle ADB$ and hence AD bisects $\angle BDC$

