

2008

Higher School Certificate

Trial Examination

(OR NSW INDEPENDENT SCHOOLS)

TRIAL HSC 2008

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- · Board approved calculators may be used
- · Write using black or blue pen
- Write your student number and/or name at the top of every page
- All necessary working should be shown in every question
- · A table of standard integrals is provided

Total marks - 84

Attempt Questions 1 – 7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x, x > 0$

Student name / number

2

1

Ouestion 1 Begin a new booklet

- (a) Find the value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec x \tan x \, dx$, giving the answer in simplest exact form.
- (b) Solve the inequality $\frac{x^2-4}{x} \ge 0$.
- (c)(i) Find the gradients at the point P(1,1) of the tangents to the curves $y = x^3$ and $y = 1 \ln x$.
 - (ii) Hence find the acute angle between these tangents, giving the answer correct to the nearest degree.

ABCD is a cyclic quadrilateral. MAN is the tangent at A to the circle through A, B, C and D. CA bisects $\angle BCD$.

Copy the diagram. Show that $MAN \parallel DB$, giving reasons.

	Student name / numb	sr
		Marks
Question 2	Begin a new booklet	

2

2

- (a) Find the set of values of x for which the limiting sum of the geometric series $1 + \ln x + (\ln x)^2 + \dots$ exists.
- (b) $A(8, \sqrt{8})$ and $B(50, \sqrt{50})$ are two points. Find the coordinates of the point P(x, y) which divides the interval AB internally in the ratio 2:1, giving the answer in simplest exact form.
- (c)(i) Express $\cos x \sqrt{3} \sin x$ in the form $R\cos(x+\alpha)$ where R>0 and $0<\alpha<\frac{\pi}{2}$. 2

 (ii) Hence solve $\cos x \sqrt{3} \sin x = -2$ for $0 \le x \le 2\pi$.
- (d) $T(2t, t^2)$ is a point on the parabola $x^2 = 4y$.
 - (i) Use differentiation to show that the tangent to the parabola at T has gradient t and equation $tx y t^2 = 0$.
 - (ii) Hence find the values of t such that the tangent to the parabola at T passes through the point P(1,-2).

Student name / number

Student name / number

Question 3 Begin a new booklet Marks

(a) Find $\frac{d}{dx}(x\sin^{-1}x)$.

2

2

2

- (b) Consider the function $f(x) = x + \frac{1}{x}$ for $x \ge 1$.
 - (i) Show that the function f(x) is increasing and the curve y = f(x) is concave up for all values of x > 1.
 - (ii) On the same diagram, sketch the graphs of y = f(x) and the inverse function $y = f^{-1}(x)$ showing the coordinates of the endpoints and the equation of the asymptote.
- (iii) Find the equation of the inverse function $y = f^{-1}(x)$ in its simplest form.
- (c) Use Mathematical induction to show that for all positive integers $n \ge 1$, $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 \frac{1}{(n+1)!}$

mestion 4	Begin a	new bookle

(a) Find $\int \cos^2 4x \, dx$.

2

2

Marks

(b)

AB is a chord of a circle of radius 1 metre that subtends an angle θ at the centre of the circle, where $0 < \theta < \pi$. The perimeter of the minor segment cut off by AB is equal to the diameter of the circle.

- (i) Show that $\theta + 2\sin\frac{1}{2}\theta 2 = 0$.
- (ii) Show that the value of θ is such that $1 < \theta < 2$.
- (iii) Use one application of Newton's method with an initial approximation of $\theta_0 = 1$ to find the next approximation to the value of θ , giving your answer correct to 1 decimal place.
- (c) Use the substitution $x = u^2$, $u \ge 0$, to evaluate $\int_1^{25} \frac{1}{x + \sqrt{x}} dx$, giving the answer in simplest exact form.

Marks

1

Marks

1

2

Question 5 Begin a new booklet

- (a) Consider the polynomial $P(x) = x^3 kx^2 + kx 1$, where k is a real constant.
- (i) Show that 1 is a root of the equation P(x) = 0.
- (ii) Given that α , $\alpha \neq 1$, is a second root of P(x) = 0, show that $\frac{1}{\alpha}$ is also a root of the equation.
- (iii) Show that $\alpha^2 + \frac{1}{\alpha^2} = k^2 2k 1$.
- (b) Three numerals are chosen at random from the numerals 1, 2, 3, ..., 9 to form a three digit code where order is important and repetition is allowed.
 - (i) Find the probability that all three digits of the code are different.
- (ii) Find the probability that exactly two digits of the code are the same.

(c)

A boat is sailing due North from point A to point B at a steady speed of $5 \,\mathrm{ms}^{-1}$. A marker buoy M on its route is situated 40 metres due West of a lighthouse L. When the boat is at point P at a distance x metres from M, the bearing of the lighthouse from the boat is θ , $0 < \theta < \frac{\pi}{2}$.

- (i) Show that $\theta = \tan^{-1} \frac{40}{r}$.
- (ii) Hence find the rate at which θ is changing when x = 20.

1

3

- Question 6 Begin a new booklet

 (a) A particle is moving in a straight line. At time t seconds it has displacement
- (a) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ given by v = 2 x and acceleration a ms⁻². Initially the particle is 4 metres to the left of O.
- (i) Find an expression for a in terms of x.
- (ii) Use integration to show that $x = 2 6e^{-t}$.
- (iii) Find the exact time taken by the particle to travel 4 metres from its starting point.
- (iv) Sketch the graph of x against t showing the intercepts on the axes and the equations of any asymptotes.
- (b) A particle is performing Simple Harmonic Motion on a straight line. At time t seconds it has displacement x metres from a fixed point O on the line given by $x = 2 + 2\cos 2t$.
 - (i) Sketch the graph of x against t showing the intercepts on the axes.
 - (ii) Show that the acceleration of the particle is given by $\ddot{x} = -4(x-2)$.
 - (iii) Find the period of the motion.
 - (iv) Find the distance travelled by the particle in the first 2 seconds of its motion, giving the answer correct to two significant figures.

Student name / number

Marks

1

1

Question 7

- Begin a new booklet
- (a) A particle is projected from a point O with speed V ms⁻¹ at an angle θ above the horizontal where $0 < \theta < \frac{\pi}{2}$. The particle moves in a vertical plane under gravity where the acceleration due to gravity is g ms⁻². At time t seconds its horizontal and vertical displacements from O are x metres and y metres respectively.
- (i) Write down expressions for x and y in terms of V, θ , g and t. Hence show that the horizontal range R of the particle is given by $R = \frac{V^2 \sin 2\theta}{g}$.
- (ii) A lawn on horizontal ground is rectangular in shape with length 50 metres and breadth 20 metres. A garden sprinkler is located at one corner S of the lawn. It rotates horizontally, and delivers water at a speed of $20 \, \mathrm{ms}^{-1}$ at angles of elevation between 15° and 45° above the horizontal. Taking g=10, find the area of the lawn that can be watered by the sprinkler, giving the answer in simplest exact form.
- (b)(i) Write down the binomial expansion of $(1+x)^n$ in ascending powers of x.
- (ii) Show that $\sum_{r=1}^{n} {}^{n}C_{r} = 2^{n} 1$.
- (iii) Use integration and the answer to part (i) to show that $\frac{1}{n+1} \sum_{r=1}^{n+1} {n+1 \choose r} = \sum_{r=0}^{n} {n \choose r+1}.$

Independent Trial HSC 2008 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines		
Criteria	Marks	
• writes primitive and substitutes for x	1	
• evaluates in simplest surd form	1	

Answer

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec x \tan x \, dx = \left[\sec x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \sec \frac{\pi}{3} - \sec \frac{\pi}{4} = 2 - \sqrt{2}$$

b. Outcomes assessed: PE3

Marking Guidelines

Wai king Guidelines	
Criteria	Marks
writes an equivalent inequality not involving a variable denominator	1
• writes one inequality for x	1
• combines this with a second inequality for x	1

Answer

By inspection of the graph, $-2 \le x < 0$ or $x \ge 2$

c. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
i • finds gradient of tangent to $y = x^3$ at P	1
• finds gradient of tangent to $y = 1 - \ln x$ at P	1
ii • finds the acute angle between the lines correct to the nearest degree	1

Answer

$$y = x^{3}$$

$$\frac{dy}{dx} = 3x^{2}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = 3$$

$$y = 1 - \ln x$$

$$\frac{dy}{dx} = -\frac{1}{x}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = -1$$

Tangent at P(1,1) has gradient 3

Tangent at P(1,1) has gradient -1

ii.
$$\tan \theta = \left| \frac{3 - (-1)}{1 + 3 \times (-1)} \right| = 2 \implies \theta \approx 63^{\circ}$$
 (to the nearest degree)

d. Outcomes assessed: PE2, PE3

Marking Guidelines Criteria Marks • explains why angles BAN, BCA are equal 1 1 • explains why angles DCA, DBA are equal 1 • uses the equality of angles BCA, DCA to complete proof that angles BAN, DBA are equal

Answer

• quotes test for parallel lines to deduce tangent MAN is parallel to BD

 $\angle BAN = \angle BCA$ (angle between tangent and chord drawn to point of contact is equal to angle subtended by the chord in the alternate segment) $\angle BCA = \angle DCA$ (given that AC bisects $\angle BCD$) $\angle DCA = \angle DBA$ (angles subtended at the circumference by the same arc DA are equal) $\therefore MAN \parallel DB$

1

(equal alternate angles on transversal BA since $\angle BAN = \angle DBA$)

Question 2

a. Outcomes assessed: H3, H5

Marking Guidelines

Criteria	Marks
• writes condition on common ratio $\ln x$ for existence of limiting sum	1
• solves this inequality for x	1

Answer

Limiting sum of geometric series $1 + \ln x + (\ln x)^2 + ...$ exists for $-1 < \ln x < 1$

 \therefore since $f(x) = e^x$ is an increasing function, $\therefore \frac{1}{a} < x < e$

b. Outcomes assessed: H5

Marking Cuidelines

Criteria	Marks
• finds x coordinate of P	1
• finds y coordinate of P as the sum of two surds	1
• simplifies surd expression for y	1

Answer

$$A(8,\sqrt{8}) \qquad B(50,\sqrt{50})$$

$$2 \qquad : \qquad 1$$

$$(\frac{100+8}{2+1}, \frac{2\sqrt{50}+\sqrt{8}}{2+1})$$

$$P\left(36, \frac{10\sqrt{2} + 2\sqrt{2}}{3}\right)$$

$$P\left(36, 4\sqrt{2}\right)$$

 $e^{-1} < e^{\ln x} < e^{1}$

c. Outcomes assessed: H5

Manager Contraction on

	Marking Guidennes	
	Criteria	Marks
i • finds value of R		1
• finds value of α	,	
ii \bullet solves equation for x		

Answer

i.
$$\cos x - \sqrt{3}\sin x = 2\left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right)$$
$$= 2\left(\cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x\right)$$
$$= 2\cos\left(x + \frac{\pi}{3}\right)$$

ii.
$$\cos x - \sqrt{3} \sin x = -2$$
, $0 \le x \le 2\pi$
 $\cos \left(x + \frac{\pi}{3}\right) = -1$, $\frac{\pi}{3} \le x + \frac{\pi}{3} \le 2\pi + \frac{\pi}{3}$
 $x + \frac{\pi}{3} = \pi$
 $x = \frac{2\pi}{3}$

d. Outcomes assessed: PE3, PE4

Marking Guidelines

Warking Guidennes	
Criteria	Marks
i • shows by differentiation that tangent has gradient t	1
• finds the equation of the tangent	1
ii \bullet substitutes coordinates of P to write equation for t	1 1
• solves equation for t	1

Answer

i.
$$y = t^2 \Rightarrow \frac{dy}{dt} = 2t$$

 $x = 2t \Rightarrow \frac{dx}{dt} = 2$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

ii. P(1,-2) lies on this tangent if

$$t+2-t^{2} = 0$$

$$t^{2}-t-2 = 0$$

$$(t-2)(t+1) = 0$$

$$t=2 \text{ or } t=-1$$

Tangent at $T(2t, t^2)$ has gradient t

and equation
$$y - t^2 = t(x - 2t^2)$$

$$y - t^2 = tx - 2t^2$$

$$tx - v - t^2 = 0$$

and equation $y - t^2 = t(x - 2t)$

Ouestion 3

a. Outcomes assessed: PE5, HE4

Marking Guidelines

Marking Guidennes	
Criteria	Marks
applies the product rule, obtaining first term	1
obtains second term by deriving inverse sine	1

Answer

$$\frac{d}{dx}(x\sin^{-1}x) = \sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$$

b. Outcomes assessed: H5, HE4

Marking Guidelines

Criteria	Marks
	1
i • shows $f(x)$ is increasing for $x > 1$	1 1
• shows the curve $y = f(x)$ is concave up for $x > 1$	
ii • sketches $y = f(x)$ showing endpoint and asymptote $y = x$	1
• sketches $y = f^{-1}(x)$ showing endpoint and asymptote	1
iii • makes x the subject	1
• interchanges x and y to find equation of inverse function	

ii.

Answer

i.
$$f(x) = x + \frac{1}{x}$$
 for $x \ge 1$

$$f'(x) = 1 - \frac{1}{x^2} > 0$$
 for $x > 1$

f(x) is increasing for x > 1

$$f''(x) = \frac{2}{x^3} > 0$$
 for $x > 1$

 $\therefore y = f(x)$ is concave up for x > 1

iii.
$$y=x+\frac{1}{x}$$
, $x \ge 1$ and $y \ge 2$

Rearrangement gives

$$x^2 - xy + 1 = 0$$
, $x \ge 1$ and $y \ge 2$

Considering this quadratic in x: $x = \frac{y \pm \sqrt{y^2 - 4}}{2}$, $x \ge 1$ and $y \ge 2$

Clearly the branch $x = \frac{y - \sqrt{y^2 - 4}}{2}$ contains points for which x < 1.

Hence expressing x as the subject of y = f(x), $x = \frac{y + \sqrt{y^2 - 4}}{2}$, $y \ge 2$.

Interchanging x and y, the inverse function is $f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}$, $x \ge 2$

c. Outcomes assessed: HE2

Marking Guidelines

Wai king Guidennes	
Criteria	Marks
• verifies truth of statement for $n=1$	1
• expresses LHS of $S(k+1)$ in terms of LHS of $S(k)$	
• expresses LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$	1
• completes algebraic rearrangement to show $S(k+1)$ is true if $S(k)$ is true	

Answer

Define the sequence of statements S(n), n=1,2,3,... by $S(n): \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + ... + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Consider
$$S(1)$$
: $LHS = \frac{1}{2!} = \frac{1}{2}$ $RHS = 1 - \frac{1}{2!} = 1 - \frac{1}{2} = \frac{1}{2}$ $\therefore S(1)$ is true

If $S(k)$ is true: $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ **

Consider $S(k+1)$: $LHS = \left\{ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$

$$= \left\{ 1 - \frac{1}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2}{(k+2)(k+1)!} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2-(k+1)}{(k+2)!}$$

$$= 1 - \frac{1}{(k+2)!}$$

$$= RHS$$

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 1$.

Question 4

a. Outcomes assessed: H8

	Marking Guidelines	
	Criteria	Marks
• expresses integrand in terms of cos8x		1
• finds primitive function		1

Answer

$$\int \cos^2 4x \ dx = \int \frac{1}{2} (1 + \cos 8x) \ dx = \frac{1}{2} x + \frac{1}{16} \sin 8x + c$$

b. Outcomes assessed: H5, PE3

Marking Guidelines		
Criteria	Marks	
i • uses cosine rule and trigonometric identity to find AB in terms of $\sin \frac{1}{2}\theta$	1	
 adds arc length to AB, equating sum and diameter to obtain required equation 	1	
ii • shows $f(1)$ and $f(2)$ have opposite signs	1	
• uses continuity of $f(\theta)$ to deduce equation has root between 1 and 2.	1	
iii • applies Newton's rule, substituting $\theta = 1$	1	
• evaluates expression to obtain next approximation, giving result correct to 1 dec. place	1	

Answer

i. Using cosine rule,
$$AB^2 = 1^2 + 1^2 - 2\cos\theta$$
 ii. Let $f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$
$$AB^2 = 2(1 - \cos\theta) \qquad f(1) = -1 + 2\sin\frac{1}{2} \approx -0.04 < 0$$

$$= 4\sin^2\frac{1}{2}\theta \qquad f(2) = 2\sin1 \approx 1.68 > 0$$
 Since $f(\theta)$ is continuous,
$$\therefore AB = 2\sin\frac{1}{2}\theta = 2$$

$$\theta + 2\sin\frac{1}{2}\theta - 2 = 0$$

$$f(\theta) = 0 \text{ for some } 1 < \theta < 2.$$

iii.
$$f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$$

$$f'(\theta) = 1 + \cos\frac{1}{2}\theta$$

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$$

$$\theta_2 = 1 - \frac{-1 + 2\sin\frac{1}{2}}{1 + \cos\frac{1}{2}}$$

$$\therefore \theta_1 \approx 1 \cdot 0 \text{ (to 1 dec. place)}$$

c. Outcomes assessed: HE6

Marking Guidelines		
Criteria	Marks	
• writes dx in terms of du	1	
\bullet writes integrand in terms of u and changes limits to u values		
• finds primitive function	1	
evaluates in simplest exact form		

Answer

$$x = u^{2}, u \ge 0$$

$$dx = 2u du$$

$$\int_{1}^{25} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{5} \frac{1}{u(u+1)} \cdot 2u du$$

$$x = 1 \Rightarrow u = 1$$

$$x = 25 \Rightarrow u = 5$$

$$= 2(\ln 6 - \ln 2)$$

$$= 2\ln 3$$

Question 5

a. Outcomes assessed: PE3

Marking Guidelines	
Criteria	Marks
: a chaves P(1) = 0	1
$i \bullet \text{shows } P(1) = 0$	1
ii • uses product of roots is 1 to deduce 3^{rd} root is reciprocal of α	ı
iii • writes sum of squares of roots in terms of square of sum and sum of two-way products	1
• uses relationships between coefficients of polynomial equation and its roots	1

Answer

i.
$$P(x) = x^3 - kx^2 + kx - 1$$

 $P(1) = 1 - k + k - 1 = 0$
ii. Product of the roots is 1.
Hence if the roots are $1, \alpha, \beta$,
then $\alpha\beta = 1$. $\therefore \frac{1}{\alpha}$ is the 3^{rd} root.
iii. $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$
 $\therefore \alpha^2 + \frac{1}{\alpha^2} + 1^2 = k^2 - 2k$
 $\therefore \alpha^2 + \frac{1}{\alpha^2} = k^2 - 2k - 1$

b. Outcomes assessed: HE3

Mar	kiı	ng	G	rid	elir	ıes
		-				

Marking Guidennes	
Criteria	Marks
i • counts the number of codes with all three digits different	1
• divides by the total number of codes to find the probability	
ii • counts the number of codes with exactly two digits the same	1
writes the probability of such a code	

Answer

i.
$$P(all\ different) = \frac{9 \times 8 \times 7}{9 \times 9 \times 9} = \frac{56}{81}$$

ii. Consider code of form A, A, B or A, B, A or B, A, A Number of such codes is $9 \times 8 \times 3$

$$P(\text{exactly two the same}) = \frac{9 \times 8 \times 3}{9 \times 9 \times 9} = \frac{8}{27}$$

c. Outcomes assessed: HE4, HE5

Marking Cuidalines

Marking Guidennes		
Criteria	Marks	
$i \bullet finds \theta$ in terms of x	1	
ii • derives θ with respect to x		
• finds the derivative of θ with respect to t in terms of x	1	
• states the rate at which θ is changing when $x = 20$		

Answer

i.
$$\tan \theta = \frac{40}{x}$$
, $0 < \theta < \frac{\pi}{2}$
 $\therefore \theta = \tan^{-1} \frac{40}{x}$

ii.
$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt}$$
$$= \frac{1}{1 + \frac{1600}{x^2}} \cdot \frac{-40}{x^2} \cdot 5$$
$$= \frac{-200}{x^2 + 1600}$$
$$\therefore x = 20 \implies \frac{d\theta}{dt} = -\frac{1}{10}$$

 θ is decreasing at a rate of 0.1 radians per second.

Ouestion 6

a. Outcomes assessed: H3, HE3, HE5

Criteria	Marks
i • finds a in terms of x	1
ii \bullet finds t as a function of x by integration	1
• rearranges to find x as a function of t	1
iii • finds t when $x = 0$	1
iv • shows intercepts on the axes	1
• shows asymptote $x = 2$	1

Answer

i.
$$v = 2 - x$$

 $a = v \frac{dv}{dx}$
 $= (2 - x) \cdot (-1)$
 $= x - 2$
ii. $\frac{dx}{dt} = 2 - x$
 $\frac{dt}{dx} = \frac{1}{2 - x}$
 $t = -\ln A(2 - x), A \text{ constant}$
 $t = 0$
 $x = -4$
 $\Rightarrow A = \frac{1}{6}$

$$\frac{dx}{dt} = 2 - x$$

$$\frac{dx}{dt} = \frac{1}{2 - x}$$

$$t = -\ln A(2 - x), \quad A \text{ constant}$$

$$t = 0$$

iii. When
$$t=0$$
, $x=-4$ $\therefore v>0$
Particle is initially moving right, and it continues
moving right approaching $x=2$.
Hence particle has travelled 4 metres from its

Hence particle has travelled 4 metres from its starting point when
$$x = 0$$
.

$$x=0 \implies -t=\ln\frac{1}{3}$$
.

: particle travels first 4 metres in ln3 seconds.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • sketches curve with correct shape and position showing intercept on x axis	1
• shows intercepts on t axis for at least one period	1
ii • differentiates to find \ddot{x} as a function of t, and hence as a function of x	1
iii ◆ states the period of the motion	1
iv • finds x when $t = 2$	1
• states the distance travelled in the first 2 seonds	1

Answer

i. $x = 2 + 2\cos 2t$

<u>5π</u>

iii. Period is π seconds

iv.
$$t=2 \implies x=2+2\cos 4 \approx 0.69$$

But $\frac{\pi}{2} < 2 < \frac{3\pi}{4}$. Hence by inspection of the graph, particle has travelled 4.7 m (correct to 2 sig. fig.)

Question 7

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
$i \bullet writes expressions for x and y$	1
• finds x when $y = 0$ and hence required expression for R	1
ii • calculates R for $V = 20$ when $\theta = 15^{\circ}$, $\theta = 45^{\circ}$	1
• identifies region that can be watered	1
• finds the area of at least part of this region	1
• finds the total area in simplest exact form	1

Answer

i.
$$x = Vt \cos\theta$$
 $y = -\frac{1}{2}gt^2 + Vt \sin\theta$
 $x = R$ when $y = 0$ and $t \neq 0$

$$y = 0, \ t \neq 0 \implies V \sin \theta = \frac{1}{2}gt$$

$$t = \frac{2V \sin \theta}{g}$$

$$\therefore R = \frac{V^2(2\sin\theta\cos\theta)}{g} = \frac{V^2 \sin 2\theta}{g}$$

The area of lawn that can be watered is shaded on the diagram.

Since
$$\cos \angle ESA = \frac{20}{40}$$
, $\angle ESA = \frac{\pi}{3}$ and $\angle ASB = \frac{\pi}{6}$.
Area = Sector ABS + $\triangle AES - Quadrant\ ECS$

$$= \frac{1}{2} \times 40^{2} \times \frac{\pi}{6} + \frac{1}{2} \times 40 \times 20 \sin \frac{\pi}{3} - \frac{1}{4} \times \pi \times 20^{2}$$

$$= 100 \times \frac{\pi}{3} + 200\sqrt{3}$$
And in $100 \left(\frac{\pi}{4} + 2\sqrt{2} \right)$ representations

Area is $100\left(\frac{\pi}{3} + 2\sqrt{3}\right)$ square metres.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • writes binomial expansion	1
ii • substitutes $x = 1$ to deduce required result	1
iii • finds primitive of LHS of i.	1
• finds primitive of RHS of i.	1
• evaluates definite integrals of LHS and RHS between limits 0 and 1	1
• uses result from ii. to deduce required result	1

Answer

$$x = 1 \Rightarrow 2^n = {^nC_0} + {^nC_1} + {^nC_2} + \dots + {^nC_n}$$

$$\frac{1}{n+1}(1+x) \quad \int_0^{\infty} = \left[C_0 x + C_1 \frac{1}{2}x + \dots + C_n \frac{1}{n+1}x \right]$$

$$\frac{1}{n+1}(2^{n+1}-1) = {}^nC_0 + \frac{1}{2} {}^nC_1 + \frac{1}{3} {}^nC_2 + \dots + \frac{1}{n+1} {}^nC_n$$

But
$${}^{n}C_{0} = 1$$
 $\therefore \sum_{r=1}^{n} {}^{n}C_{r} = 2^{n} - 1$

$$\therefore \frac{1}{n+1} \sum_{r=1}^{n+1} {n+1 \choose r} = \sum_{r=0}^{n} \frac{{}^{n}C_{r}}{r+1} \quad \text{(using ii. with } n \to n+1$$