NSW - INDEPENDENT SCHOOLS

2009 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 84

- Attempt Questions 1 7
- All questions are of equal value

This paper MUST NOT be removed from the examination room

Student name / number

Question 1 Begin a new

Begin a new booklet

(a) Find $\lim_{x\to 0} \frac{\sin 3x}{2x}$.

(b) Find the limiting sum of the geometric series $\left(\frac{e}{e+1}\right) + \left(\frac{e}{e+1}\right)^2 + \left(\frac{e}{e+1}\right)^3 + \dots$ 2

(c) The equation $x^3 + 2x^2 + 3x + 6 = 0$ has roots α , β and γ . Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(d) Find the acute angle between the lines y = 2x and x + y - 3 = 0, giving the answer correct to the nearest degree.

(e) B

AB is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets BC produced at D. E is a point on AD and F is a point on CD such that EF is parallel to AC.

(i) Give a reason why $\angle EAC = \angle ABC$.

(ii) Hence show that *EABF* is a cyclic quadrilateral.

(iii) Show that BE is a diameter of the circle through E, A, B and F.

Marks

2

1

2

2

1

3

2

Question 2 Begin a new booklet

(a) Evaluate $\int_0^{\frac{\pi}{8}} \sec 2x \tan 2x \, dx$, giving the answer in simplest exact form.

V0

(b) Find the number of ways in which 3 boys and 3 girls can be arranged in a line so that the two end positions are occupied by boys and no two boys are next to each other.

(c) A(-2,3) and B(6,-1) are two points. Find the coordinates of the point P that divides the interval AB internally in the ratio 3:2.

(d) Use the substitution $t = \tan \frac{x}{2}$ to show that $\frac{\sin x}{1 - \cos x} = \cot \frac{x}{2}$.

(e)

 $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$. The normal to the parabola at P cuts the y-axis at N. M is the midpoint of PN.

(i) Use differentiation to show that the normal to the parabola at P has equation $x + ty = 2at + at^3$.

(ii) Find the equation of the locus of M as P moves on the parabola.

Question 3

Marks

2

2

2

2

Begin a new booklet

(a)

The region bounded by the curves $y = \cos x$ and $y = \sin x$ between x = 0 and $x = \frac{\pi}{4}$ is rotated through one complete revolution around the x-axis. Find the volume of the solid of revolution.

(b) Use Mathematical Induction to show that for all positive integers $n \ge 2$, $2 \times 1 + 3 \times 2 + 4 \times 3 + ... + n(n-1) = \frac{n(n^2 - 1)}{3}$.

(c) Consider the function $f(x) = (x+2)^2 - 9$, $-2 \le x \le 2$.

(i) Find the equation of the inverse function $f^{-1}(x)$.

(ii) On the same diagram, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing clearly the coordinates of the endpoints and the intercepts on the coordinate axes.

(iii) Find the x-coordinate of the point of intersection of the curves y = f(x) and $y = f^{-1}(x)$, giving the answer in simplest exact form.

3

2

2

Marks

2

2

1

Question 4 Begin a new booklet Marks

- (a) Bob chooses six numbers from the numbers 1 to 40 inclusive. A machine then chooses six numbers at random from the numbers 1 to 40 inclusive. Find the probability that none of Bob's numbers match the numbers chosen by the machine, giving the answer correct to 2 decimal places.
- (b) Use the substitution $u = \sin^2 x$ to evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} dx$, giving the answer 4 in simplest exact form.

(c)

AOB is a diameter of a circle with centre O and radius 1 metre. AC is a chord of the circle such that $\angle BAC = \theta$, where $0 < \theta < \frac{\pi}{2}$. The area of that part of the circle contained between the diameter AB and the chord AC is equal to one quarter of the area of the circle.

- (i) Show that $\theta + \frac{1}{2}\sin 2\theta \frac{\pi}{4} = 0$.
- (ii) Show that $0.4 < \theta < 0.5$.
- (iii) Use one application of Newton's method with an initial approximation $\theta_0 = 0.4$ to find the next approximation to the value of θ , giving your answer correct to 2 decimal places.

question 5	Begin	a new	booklet

a) Consider the function $f(x) = \tan^{-1}(x-1)$.

(i) Sketch the curve y = f(x) showing clearly the equations of any asymptotes and the intercepts on the coordinate axes.

(ii) Find the equation of the tangent to the curve y = f(x) at the point where x = 1.

(b) A particle is moving in a straight line. After time t seconds, it has displacement x metres from a fixed point O in the line, velocity v ms⁻¹ given by $v = \sqrt{x}$ and acceleration a ms⁻². Initially the particle is 1 metre to the right of O.

(i) Show that a is independent of x.

(ii) Express x in terms of t.

(iii) Find the distance travelled by the particle during the third second of its motion.

(c)

A vertical tower CD of height 15 metres stands with its base C on horizontal ground. A is a point on the ground due South of C such that the angle of elevation of the top D of the tower from A is $\frac{\pi}{4}$ radians. B is a variable point on the ground due East of C such that the angle of elevation of the top D of the tower from B is α radians, where $0 < \alpha < \frac{\pi}{2}$. The value of α is increasing at a constant rate of 0.01 radians per second.

(i) show that $AB = 15 \csc \alpha$.

_

(ii) Find the rate at which the length AB is changing when $\alpha = \frac{\pi}{3}$.

2

Marks

2

3

Marks Question 6 Begin a new booklet

- A particle is performing Simple Harmonic Motion in a straight line. At time t seconds, it has displacement x metres from a fixed point O in the line, velocity $v \text{ ms}^{-1}$ given by $v = -12\sin(2t + \frac{\pi}{3})$ and acceleration $\ddot{x} \text{ ms}^{-2}$. Initially the particle is 5 metres to the right of O.
- (i) Show that $\ddot{x} = -4(x-2)$.
- (ii) Find the period and the extremities of the motion.
- (iii) Find the time taken by the particle to return to its starting point for the first time.
- After t hours, the number of individuals in a population is given by $N = 500 - 400e^{-0.1t}$
- (i) Sketch the graph of N as a function of t, showing clearly the initial population size and the limiting population size.
- (ii) Show that $\frac{dN}{dt} = 0.1(500 N)$. .1
- (iii) Find the population size for which the rate of growth of the population is half the initial rate of growth.
- If $\cos^{-1} x \sin^{-1} x = k$, where $-\frac{\pi}{2} \le k \le \frac{3\pi}{2}$, show that $x = \frac{1}{15} \left(\cos \frac{k}{2} \sin \frac{k}{2} \right)$. 2

Ouestion 7

Begin a new booklet

(a)

3

2

1

2

1

A toy rocket is projected from a point O with speed V ms⁻¹ at an angle θ above the horizontal, where $0 < \theta < \frac{\pi}{2}$. The rocket moves in a vertical plane under gravity where the acceleration due to gravity is 10 ms⁻². After 8 seconds the rocket hits a target at a horizontal distance 288 metres from O and at a height 64 metres above O.

- (i) Use integration to show that after time t seconds, the horizontal and vertical displacements of the rocket from O, x metres and y metres respectively, are given by $x = Vt\cos\theta$ and $y = Vt\sin\theta - 5t^2$.
- (ii) Find the exact values of V and θ .
- (iii) Find the velocity of the rocket just before impact with the target, giving the speed 3 correct to the nearest integer and the angle to the horizontal correct to the nearest degree.
- (b)(i) By considering the term in x^r on both sides of the identity $(1+x)^{m+n} = (1+x)^m (1+x)^n$, show that $^{m+n}C_r = \sum_{k=0}^r {^mC_k}^n C_{r-k}$, for $0 \le r \le m$ and $0 \le r \le n$.
- (ii) Hence show that ${}^{m+1}C_0{}^nC_2 + {}^{m+1}C_1{}^nC_1 + {}^{m+1}C_2{}^nC_0 = {}^{m}C_0{}^{n+1}C_2 + {}^{m}C_1{}^{n+1}C_1 + {}^{m}C_2{}^{n+1}C_2$ for $m \ge 2$ and $n \ge 2$.

Independent Trial HSC 2009 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
• rearranges in terms of known trigonometric limit	1
• evaluates limit	1

Answer

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \lim_{x \to 0} \frac{\sin 3x}{3x} = \frac{3}{2} \times 1 = \frac{3}{2}$$

b. Outcomes assessed: H5

Marking Guidelines

B - B - B - B - B - B - B - B - B - B -		
Criteria	Marks	l
• identifies a and r for the G.P	1	l
• applies formula for limiting sum	1	

Answer

$$\left(\frac{e}{e+1}\right) + \left(\frac{e}{e+1}\right)^2 + \left(\frac{e}{e+1}\right)^3 + \dots \qquad \text{is G.P. with } a = \frac{e}{e+1}, \quad \text{and} \quad r = \frac{e}{e+1} \implies 0 < r < 1$$

$$\therefore \text{ Limiting sum is } \frac{a}{1-r} = \frac{e}{e+1} \div \frac{1}{e+1} = e$$

c. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• expresses sum of reciprocals of roots in terms of sums of products	1
• evaluates using relationships between roots and coefficients	1

Answer

$$\alpha$$
, β and γ roots of $x^3 + 2x^2 + 3x + 6 = 0$.
$$\therefore \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma} = \frac{3}{-6} = -\frac{1}{2}$$

d. Outcomes assessed: H5

Marking Guidelines

That may Guidelines		
Criteria	Marks	
• substitutes values of gradients into formula for tangent of acute angle between the lines	1	
evaluates required angle	1	

Answer

Acute angle θ between lines y = 2x and x + y - 3 = 0 is given by $\tan \theta = \left| \frac{2 - (-1)}{1 + 2 \cdot (-1)} \right| = 3$

 $\theta \approx 72^{\circ}$ (to the nearest degree)

e. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • quotes alternate segment theorem	1
ii • gives a sequence of deductions resulting in a test for a cyclic quadrilateral	1
• justifies these deductions by quoting geometric properties and tests	1
iii \bullet explains why BE subtends a right angle at A or at F	

Answer

- i. The angle between the tangent at A and the chord AC is equal to the angle subtended by that chord in the alternate segment, hence $\angle EAC = \angle ABC$.
- ∠EAC = ∠DEF (Corresp. ∠'s with parallel lines AC, EF are equal)
- $\therefore \angle DEF = \angle ABC \quad (Both \ equal \ to \ \angle EAC)$
- \therefore EABF is cyclic (Exterior \angle equal to interior opp. \angle)
- iii. $\angle BAE = 90^{\circ}$ (Tangent to circle ABC at A is perpendicular to radius OA drawn to point of contact)
- ∴ BE is a diameter (subtends right ∠ at circumference) of circle EABF.

Question 2

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• finds primitive	1
• evaluates in surd form	1

Answer

$$\int_0^{\frac{\pi}{8}} \sec 2x \, \tan 2x \, dx = \frac{1}{2} \left[\sec 2x \right]_0^{\frac{\pi}{8}} = \frac{1}{2} \left(\sqrt{2} - 1 \right)$$

b. Outcomes assessed: PE3

Marking Guidelines

Trial king Guidelines	
Criteria	Marks
• counts arrangements for one possible pattern of B's and G's	1
• adds number of arrangements for the second possible pattern of B's and G's	1

Answer

BGBGGB or BGGBGB $\therefore 2 \times 3! \times 3! = 72$ ways

c. Outcomes assessed: H5

Moulting Cuidelines

Warking Guidelines		
	Criteria	Marks
• finds x coordinate of P		1
• finds y coordinate of P		1

d. Outcomes assessed: H5

Marking Guidelines

THURST GUIDENES		
Criteria	Marks	
• simplifies $1-\cos x$ in terms of t	1	
\bullet completes simplification of given expression in terms of t to establish required result	1	

Answer

$$1 - \cos x = 1 - \frac{1 - t^2}{1 + t^2}$$

$$= \frac{2t^2}{1 + t^2}$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$\therefore \frac{\sin x}{1 - \cos x} = \frac{2t}{1 + t^2} \times \frac{1 + t^2}{2t^2}$$
$$= \frac{1}{t}$$
$$= \cot \frac{x}{2}$$

e. Outcomes assessed: PE3, PE4

Criteria	Marks
i • finds $\frac{dy}{dx}$ as a function of t	1
• finds equation of normal in required form	
ii \bullet finds coordinates of M	
• finds equation of locus of <i>M</i>	1

Answer

$$y = at^{2} \Rightarrow \frac{dy}{dt} = 2at$$

$$x = 2at \Rightarrow \frac{dx}{dt} = 2a$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

$$\therefore \text{Normal at } P \text{ has gradient } -\frac{1}{t} \text{ and equation}$$

$$y - at^{2} = -\frac{1}{t}(x - 2at)$$

$$ty - at^{3} = -x + 2at$$

$$y - at^2 = -\frac{1}{t}(x - 2a)$$
$$ty - at^3 = -x + 2at$$

$$x + ty = 2at + at^3$$

ii.
$$N(0, 2a + at^2)$$
 $\therefore M(at, a + at^2)$
 $P(2at, at^2)$

Locus of
$$M$$
 has equation $y = a + a \left(\frac{x}{a}\right)^2$
$$x^2 = a(y - a)$$

Question 3

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• writes definite integral for the volume in terms of $\cos x$ and $\sin x$	1
• evaluates the integral.	1

Answer

$V = \pi \int_0^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) dx$
$=\pi\int_0^{\frac{\pi}{4}}\cos 2xdx$
$=\frac{1}{2}\pi\Big[\sin 2x\Big]_0^{\frac{\pi}{4}}$
$=\frac{1}{2}\pi (1-0)$

Volume is $\frac{\pi}{2}$ cubic units.

b. Outcomes assessed: HE2

Marking Guidelines

Criteria	Marks
• defines an appropriate sequence of statements $S(n)$ and shows the first member is true	1
• writes the LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$	1
• rearranges conditional expression for LHS of $S(k+1)$ to obtain RHS	1
• completes proof by Mathematical Induction	1

Answer

Let S(n), n=2, 3, 4, ..., be the sequence of statements defined by

$$S(n)$$
: $2 \times 1 + 3 \times 2 + 4 \times 3 + ... + n(n-1) = \frac{n(n^2-1)}{3}$

Consider
$$S(2)$$
: LHS = $2 \times 1 = 2$; RHS = $\frac{2(2^2 - 1)}{3} = 2$.

Hence S(2) is true.

If
$$S(k)$$
 is true: $2 \times 1 + 3 \times 2 + 4 \times 3 + ... + k(k-1) = \frac{k(k^2-1)}{3}$

Consider
$$S(k+1)$$
: $LHS = \left\{2 \times 1 + 3 \times 2 + 4 \times 3 + \dots + k(k-1)\right\} + (k+1)k$

$$= \frac{k(k^2 - 1)}{3} + (k+1)k \quad \text{if } S(k) \text{ is true, using *}.$$

$$= \frac{k(k+1)\left\{(k-1) + 3\right\}}{3}$$

$$= \frac{(k+1)\left\{k^2 + 2k\right\}}{3}$$

$$= \frac{(k+1)\left\{(k+1)^2 - 1\right\}}{3}$$

Hence if S(k) is true then S(k+1) is true. But S(2) is true, and hence S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 2$.

c. Outcomes assessed: HE4

18 AT -	1	. ~		
IVI	rking	' tru	не	une

Criteria	Marks
i • rearranges and interchanges x and y to obtain equation of inverse function	1
ii • sketches graph of $y = f(x)$ showing endpoints and intercepts	1
• sketches inverse function by reflection in $y = x$	
 shows endpoints and intercepts for inverse function 	1
iii • writes equation for x	1
• solves for x in simplest exact form	1

Answer

i.
$$f(x) = (x+2)^2 - 9$$
, $-2 \le x \le 2$.
 $(x+2)^2 = y+9$ and $0 \le x+2 \le 4$
 $x+2 = +\sqrt{y+9}$
 $\therefore x = -2 + \sqrt{y+9}$, $-9 \le y \le 7$
 $\therefore x \leftrightarrow y \implies f^{-1}(x) = -2 + \sqrt{x+9}$, $-9 \le x \le 7$

iii. Graphs intersect on the line y = x.

Hence
$$(x+2)^2 - 9 = x$$

 $x^2 + 3x - 5 = 0$
 $\therefore x > 0 \Rightarrow x = \frac{-3 + \sqrt{29}}{2}$

ii. Graphs of inverse functions are reflections of each other in y = x

Question 4

a. Outcomes assessed: HE3

Marking	Guidelines
MATKINS	Guidennes

Criteria	Marks
• writes expression for probability in terms of binomial coefficients	1
• evaluates required probability	1

Answer

$$P(none\ in\ common) = \frac{^{34}C_6}{^{40}C_6} \approx 0.35$$
 (to 2 decimal places)

b. Outcomes assessed: HE6

Marking Guidelines

THE KING GUILDINGS		
Criteria	Marks	
• writes du in terms of dx and converts limits for x into limits for u	1	
• finds equivalent definite integral in terms of u	1	
• finds primitive and substitutes limits	1	
• simplifies exact answer		

Answer

$$u = \sin^{2} x$$

$$du = 2 \sin x \cos x \, dx$$

$$du = \sin^{2} x \, dx = \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1}{1+u} \, du$$

$$= \left[\ln(1+u)\right]_{\frac{1}{2}}^{\frac{3}{4}}$$

$$= \ln\frac{7}{4} - \ln\frac{3}{2}$$

$$= \ln\frac{7}{6}$$

c. Outcomes assessed: H5, PE3

Marking Guidelines

Criteria	Marks
i • finds area of $\triangle AOC$ in terms of $\sin 2\theta$	1
ullet uses area information to complete equation for $ heta$	1
ii • shows that $f(0.4)$, $f(0.5)$ have opposite signs	1
• notes that f is continuous, and deduces equation has one root θ , $0.4 < \theta < 0.5$	1
iii • applies Newton's rule to write numerical expression for next approximation	1
• evaluates this approximation	1

Answer

- i. $\angle OCA = \theta$ (\angle 's opp. equal sides are equal in $\triangle AOC$) $\angle AOC = \pi - 2\theta$ (\angle sum of \triangle is π) $\angle BOC = 2\theta$ (adj. supp. \angle 's add to π) Area sector $BOC + Area \triangle AOC = \frac{1}{4} Area circle$ $\therefore \frac{1}{2} \times 1^2 \times 2\theta + \frac{1}{2} \times 1^2 \times \sin(\pi - 2\theta) = \frac{1}{4} \times \pi \times 1^2$ $\theta + \frac{1}{2} \sin 2\theta - \frac{\pi}{4} = 0$
- ii. Let $f(\theta) = \theta + \frac{1}{2}\sin 2\theta \frac{\pi}{4}$ $f(0 \cdot 4) \approx -0 \cdot 03 < 0$ and f is continuous $f(0 \cdot 5) \approx 0 \cdot 14 > 0$ and f is continuous Also $f'(\theta) = 1 + \cos 2\theta > 0 \Rightarrow f$ monotonic increasing $f(\theta) = 0$ for exactly one value of $f(\theta) = 0$.
- iii. Since $f'(\theta) = 1 + \cos 2\theta$, $\theta \approx 0.4 - \frac{f(0.4)}{f'(0.4)}$ $\approx 0.4 - \frac{-0.0267}{1.6967}$ ≈ 0.42 (to 2 dec. pl.)

Question 5

a. Outcomes assessed: HE4

Marking Guidelines

Tranking Guidennes		
Criteria	Marks	
i ◆ shows correct shape and asymptotes	1	
• shows intercepts on coordinate axes	1	
ii • finds $\frac{dy}{dx}$ and evaluates for $x = 1$	1	
• finds equation of tangent	1	

Answer

ii.
$$y = \tan^{-1}(x-1)$$

$$\frac{dy}{dx} = \frac{1}{1 + (x - 1)^2}$$

$$\therefore \frac{dy}{dx} = 1 \quad \text{when} \quad x = 1$$

... Tangent at (1,0) has gradient 1 and equation y = x - 1

b. Outcomes assessed: HE5

Marking Guidelines

Criteria	Marks
i • shows by differentiation that a is constant	1
ii • integrates to find a primitive function for t in terms of x	1
\bullet evaluates constant of integration using initial conditions then writes x as a function of t	I
iii • evaluates x at $t = 2$ and $t = 3$ to find distance travelled in third second.	

Answer

i.
$$v = \sqrt{x} \implies \frac{1}{2}v^2 = \frac{1}{2}x$$

$$\therefore a = \frac{d}{dx}(\frac{1}{2}v^2) = \frac{1}{2} \text{ for all } x$$

Hence a is independent of x.

ii.
$$\frac{dx}{dt} = x^{\frac{1}{2}}$$

$$\begin{cases}
 t = 0 \\
 x = 1
 \end{cases}$$

$$\frac{dt}{dx} = x^{-\frac{1}{2}}$$

$$\therefore t = 2\sqrt{x} - 2$$

$$t = 2x^{\frac{1}{2}} + \epsilon$$

$$x = \frac{1}{4}(t+2)$$

iii. Between t = 2 and t = 3, particle moves right from x = 4 to $x = \frac{25}{4}$. Distance travelled in third second is $2 \cdot 25$ m.

c. Outcomes assessed: H5, HE5, HE7

Marking Guidelines

Was king Guidenties		
Criteria	Marks	
i • finds AC and finds BC in terms of $\cot \alpha$	1	
$ullet$ uses Pythagoras' theorem and an appropriate trig. identity to find AB in terms of $\csc lpha$	1	
ii \bullet differentiates AB with respect to t using chain rule or implicit differentiation	1	
• substitutes given values and interprets result	1 1	

Answer

i. In $\triangle ACD$,

$$\angle DAC = \angle ADC = \frac{\pi}{4}$$

$$AC = 15$$
.

In $\triangle BCD$, $BC = 15\cot \alpha$.

 \therefore In $\triangle ABC$,

$$AB^2 = 15^2 + 15^2 \cot^2 \alpha$$

$$=15^2(1+\cot^2\alpha)$$

$$=15^2 \operatorname{cosec}^2 \alpha$$

$$AB = 15 \csc \alpha$$

ii. When $\alpha = \frac{\pi}{2}$,

$$\frac{dAB}{dt} = -15 \csc \alpha \cot \alpha \frac{d\alpha}{dt}$$

$$=-15\times\frac{2}{\sqrt{3}}\times\frac{1}{\sqrt{3}}\times0\cdot01$$

$$= -0.1$$

∴ AB is decreasing at a rate of 0.1 ms^{-1}

Ouestion 6

a. Outcomes assessed: HE3

Marking Guidelines

	Criteria	Marks
i • integrates v v	with respect to t to find expression for x	1
• uses initial co	onditions to evaluate the constant of integration, giving x as a function of t	1
	v with respect to t to get \ddot{x} then expresses \ddot{x} in terms of x	1
ii • states period	•	1
states extrem	ities	1
iii • solves trig. e	quation to find time to first return	1

Answer

i.
$$v = -12\sin(2t + \frac{\pi}{3})$$

$$x = 6\cos(2t + \frac{\pi}{3}) + c \qquad \ddot{x} = -24\cos(2t + \frac{\pi}{3})$$

$$t = 0, \quad x = 5 \Rightarrow c = 2$$

$$\therefore x = 2 + 6\cos(2t + \frac{\pi}{3}) \qquad \therefore \ddot{x} = -4(x - 2)$$

ii. Period is π seconds. $-4 \le x \le 8$

iii.
$$x = 5 \Rightarrow \cos(2t + \frac{\pi}{3}) = \frac{1}{2}$$

 $2t + \frac{\pi}{3} = \frac{\pi}{3}, 2\pi - \frac{\pi}{3}, ...$
 $t = 0, \frac{2\pi}{3}, ...$

First return after $\frac{2\pi}{3}$ seconds.

b. Outcomes assessed: HE3

Marking Guidelines

<u>Criteria</u>	Marks
i • sketches graph of correct shape with correct vertical intercept	1
shows asymptote for limiting population size	1
ii • differentiates with respect to t	1
iii • writes and solves equation for N	1

Answer

ii. $N = 500 - 400e^{-0.1t}$ $\frac{dN}{dt} = 0.1 \times 400e^{-0.1t}$

= 0.1(500 - N)

0 · 1 (500 − 100) = 0 · 1 × 400 ∴ want N such that 0 · 1 (500 − N) = 0 · 1 × 200

500 - N = 200 N = 300

Initial rate of growth is

c. Outcomes assessed: H5, HE4

Marking Guidelines

Criteria	Marks
• uses inverse trig. identity to simplify equation	1
• uses trig. expansion to evaluate x in terms of k	1

Answer

$$\cos^{-1} x - \sin^{-1} x = k, \quad -\frac{\pi}{2} \le k \le \frac{3\pi}{2} \qquad \therefore 2\cos^{-1} x = k + \frac{\pi}{2} \qquad \therefore x = \cos\frac{k}{2}\cos\frac{\pi}{4} - \sin\frac{k}{2}\sin\frac{\pi}{4}$$

$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \qquad \cos^{-1} x = \frac{k}{2} + \frac{\pi}{4} \qquad = \frac{1}{\sqrt{2}}(\cos\frac{k}{2} - \sin\frac{k}{2})$$

$$x = \cos(\frac{k}{2} + \frac{\pi}{4})$$

Question 7

a. Outcomes assessed: HE3

Marking Guidelines

	Criteria	Marks
i	• uses integration to find expressions for \dot{x} and x	1
	• uses integration to find expressions for \dot{y} and y	1
ii	\bullet writes simultaneous equations for V and θ	1
	\bullet finds the value of V	1
	ullet finds the value of eta	1
iii	$i \bullet finds the values of \dot{x}$ and \dot{y} just before impact	
	• uses Pythagoras' theorem to find the magnitude of v	1
	• uses trigonometry to find the direction of ν as an angle relative to the horizontal	1

Answer

ii. When t = 8

iii. When t = 8

$$\dot{x} = 60 \times \frac{3}{5} = 36$$

 $\dot{y} = -80 + 60 \times \frac{4}{5} = -32$

Velocity of rocket just before impact is approximately 48 ms⁻¹ inclined at 42° below the horizontal.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • writes a typical term in x' in the expansion of the RHS of the identity	1
• collects like terms to find coefficient of x^r , then equates to coefficient of x^r on LHS	1
ii • writes single binomial coefficient for sum on LHS	1
• writes single binomial coefficient for sum on RHS then deduces result	1

Answer

i. $(1+x)^{m+n} = (1+x)^m (1+x)^n$ For $0 \le r \le m$ and $0 \le r \le n$.

terms in x^r in expansion of the RHS have the form ${}^mC_kx^k\times{}^nC_{r-k}x^{r-k}$, k=0,1,2,...,r.

Collecting such like terms gives the coefficient of x^r as $\sum_{k=0}^{\infty} {}^m C_k {}^m C_{r-k}$.

The coefficient of x^r in the expansion of the LHS is ${}^{m+n}C_r$.

Hence equating coefficients of x^r on both sides of the identity gives ${}^{m+n}C_r = \sum_{k=0}^{\infty} {}^mC_k{}^nC_{r-k}$.

ii. Using i., for $m \ge 2$ and $n \ge 2$,

$$^{m+1}C_0{}^nC_2 + ^{m+1}C_1{}^nC_1 + ^{m+1}C_2{}^nC_0 = ^{(m+1)+n}C_2 \quad \text{and} \quad ^mC_0{}^{n+1}C_2 + ^mC_1{}^{n+1}C_1 + ^mC_2{}^{n+1}C_0 = ^{m+(n+1)}C_2 \\ \therefore ^{m+1}C_0{}^nC_2 + ^{m+1}C_1{}^nC_1 + ^{m+1}C_2{}^nC_0 = ^mC_0{}^{n+1}C_2 + ^mC_1{}^{n+1}C_1 + ^mC_2{}^{n+1}C_0 = ^{m+n+1}C_2$$