NSW INDEPENDENT SCHOOLS

2016

Higher School Certificate

Trial Examination

Mathematics Extension 1

General Instructions

Reading time – 5 minutes

Working time – 2 hours

Board approved calculators may be used.

Write using black or blue pen

A reference sheet is provided

 All necessary working should be shown in Ouestion 11 – 14

 Write your student number and/or name at the top of every page Total marks - 70

Section I - Pages 2 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-9

60 marks

Attempt Questions 11-14

Allow about 1 hour 45 minutes for this section

This paper MUST NOT be removed from the examination room

Student name / number

Marks

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

1 What is the value of $\lim_{x\to 0} \frac{\sin(\frac{1}{2}x)}{2x}$

1

- (A) (
- (B) 1/4
- (C) 1
- (D) 4

2 In the diagram below, AB is a diameter of the circle. C is a point on the circle such that $AC = \frac{1}{2}AB$. D is a point on the circle. What is the size of $\angle ADC$?

NOT TO SCALE

- (A) 15°
- (B) 30°
- (C) 45°
- (D) 60°

3 The equation $x^3 + bx^2 + cx + d = 0$ has roots α , β and γ .

1

What is the value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$?

- (A) -
- (B) -
- (C)
- (D) l

Marks

1

- 4 Which of the following is equal to $log_1 x$?
 - (A) $-\log_a x$
 - (B) $\frac{-1}{\log_a x}$
 - (C) $\frac{1}{\log_{\alpha} x}$
 - (D) $\log_a x$
- 5 Four different coloured, fair dice are rolled together. In how many ways can exactly two 'sixes' occur?
 - (A) '2:
 - (B) 100
- (C) 150
- (D) 250
- 6 Which of the following is a simplification of $\cot 2x + \tan x$?
 - (A) $\sec 2x$
 - (B) $\sec x$
 - (C) cosec x
 - (D) $\csc 2x$
- 7 What is the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^6$?
 - (A) -20
 - (B) -15
 - (C) 15
 - (D) 20

- 8 Which of the following is an expression for $\frac{d}{dx}\sin^{-1}(2x-1)$?
 - $(A) \qquad \frac{-1}{\sqrt{x(x-1)}}$
 - (B) $\frac{-1}{2\sqrt{x(x-1)}}$
 - (C) $\frac{1}{2\sqrt{x(1-x)}}$
 - (D) $\frac{1}{\sqrt{x(1-x)}}$
- 9 The side x cm of a cube is decreasing in such a way that the volume $V \text{ cm}^3$ is decreasing at a constant rate of 6 cm^3 per minute. What is the rate at which the side of the cube is decreasing when the side is 4 cm?
 - (A) $\frac{1}{8}$ cm/min
 - (B) $\frac{1}{6}$ cm/min
 - (C) $\frac{1}{4}$ cm/min
 - (D) $\frac{1}{2}$ cm / min
- 10 A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line where x is given by $x = 4\sin^2 t 1$. Where is the centre of motion?
 - (A) x = -1
 - (B) x = 0
 - (C) x=1
 - (D) x=2

Student name /	number	

Marks

2

3

Section II

60 Marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer the questions in writing booklets provided. Use a separate writing booklet for each question. In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a separate writing booklet.

- (a) Solve the inequality $\frac{x-1}{x+2} > 0$.
- (b) A(-3,1) and B(1,-2) are two points. Find the coordinates of the point P that divides the interval AB externally in the ratio 3:1.
- (c) Find $\int \frac{1+2x}{1+x^2} dx$.
- (d)(i) Find the tangent of the acute angle between the lines y = x and y = 2x.
- (ii) Hence show that the line y=2x bisects the acute angle between the lines y=x and y=7x.
- (e) Use Mathematical Induction to show that for all positive integers n $1\times 4 + 2\times 5 + 3\times 6 + ... + n(n+3) = \frac{1}{3}n(n+1)(n+5).$
- (f) Use the substitution x = u 2 to evaluate $\int_{-1}^{2} \frac{3x + 5}{\sqrt{x + 2}} dx$.

Marks

Question 12 (15 marks)

Use a separate writing booklet.

- (a) The three numbers a, b, c are consecutive terms in an arithmetic progression. Show that the three numbers e^a , e^b , e^c are consecutive terms in a geometric progression.
- (b) In the diagram the two circles touch internally at T. ATB is the common tangent to the two circles at T. P and Q are points on the smaller circle and R and S are points on the larger circle such that TPR and TQS are straight lines. Copy the diagram and show that $PQ \parallel RS$.

- The polynomials P(x) and Q(x) are such that P(x) = x(x-1)Q(x) + ax + b for some constants a and b. (x-1) is a factor of P(x) and when P(x) is divided by x the remainder is 2. Find the remainder when P(x) is divided by x(x-1).
- (d) The region bounded by the curve $y = \cos^{-1} x$ and the y axis between $y = \frac{\pi}{12}$ and $y = \frac{\pi}{4}$ 3 is rotated through one complete revolution about the y axis. Find the exact volume of the solid formed,
- (e) Consider the function $f(x) = \sin^{-1}(1-x) + \frac{\pi}{2}$.
 - (i) Find the domain and range of the function.
 - (ii) Sketch the graph of the function showing clearly the shape of the curve and the coordinates of the endpoints.

Student name / number

Marks

1

Question 13 (15 marks)

Use a separate writing booklet.

- (a) $T(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus F(0, a). The tangent to the parabola at T has equation $tx y at^2 = 0$. Find in simplest form in terms of t:
 - (i) The perpendicular distance d from F to the tangent at T.
 - (ii) The ratio $\frac{d}{FT}$.
- (b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line and velocity $v \text{ ms}^{-1}$ given by $v = (1-x)^2$. Initially the particle is at O. Find an expression for x as a function of t.

- (c) In each game of chess that Bobby plays against Boris there is a probability of $\frac{1}{3}$ that Borby wins the game, a probability of $\frac{1}{6}$ that Boris wins and a probability of $\frac{1}{2}$ that the game is drawn. They play 4 games of chess against each other.
- (i) Find the probability that Bobby wins 2 games and Boris wins 2 games.
- (ii) Find the probability that Bobby wins 1 game, Boris wins 1 game and the other 2 games are drawn.

- (d) Consider the equation $x^3 + 2x 7 = 0$.
 - (i) Show that the equation has a root α such that $1 < \alpha < 2$.
 - (ii) Show that α is the only real root of the equation.
 - (iii) Use one application of Newton's method with an initial approximation $\alpha_0 = 1.5$ to find the next approximation for α correct to 1 decimal place.

•	

Marks

Question 14 (15 marks)

Use a separate writing booklet.

Student name / number

- (a) At time t years the number N of individuals in a population is such that $\frac{dN}{dt} = -0.1(N-P)$ for some constant P.
- (i) Show that $N = P + Ae^{-0.1t}$, where A is constant, satisfies the given differential equation.
- (ii) If the initial population size is 500 and the limiting population size is 100, find the values of P and A.
- (b) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ and acceleration in ms⁻² given by $\ddot{x} = -4(x-1)$. When the particle is at the centre of its motion it has speed 6 ms^{-1} .
 - (i) Show that $v^2 = -4x^2 + 8x + 32$.
 - (ii) Find the period and amplitude of the motion.
- (c) In the expansion of $(1+\alpha x)^n$ in ascending powers of x, the first three terms are $1+6x+16x^2+\dots$.
- (i) Write down two equations in a and n.
- (ii) Hence find the values of a and n.
- (d) A particle is projected from a point O on the top of a vertical cliff of height h metres above horizontal ground with speed of projection $V=20\sqrt{2}~{\rm ms}^{-1}$ at an angle $\alpha=45^{\circ}$ above the horizontal. It moves in a vertical plane under gravity where the acceleration due to gravity is $10~{\rm ms}^{-2}$. At time t seconds its horizontal and vertical displacements from O, x metres and y metres respectively, are given by

 $x = Vt\cos\alpha$ and $y = Vt\sin\alpha - 5t^2$. (DO NOT PROVE THESE RESULTS)

The particle hits the ground with speed 52 ms⁻¹.

- (i) Find the time at which the particle hits the ground.
- (ii) Hence find the height of the cliff.

- 1

Independent Trial HSC 2016

Mathematics Extension 1

Marking Guidelines

Section 1 Questions 1-10 (1 mark each)

Question	Answer	Solution	Outcomes
1	В	$\lim_{x \to 0} \frac{\sin(\frac{1}{2}x)}{2x} = \frac{1}{4} \cdot \lim_{x \to 0} \frac{\sin(\frac{1}{2}x)}{(\frac{1}{2}x)} = \frac{1}{4} \times 1 = \frac{1}{4}$	H5
2	В	∠ACB = 90° (∠ in a semicircle is a right angle). Then ∠ABC = 30° since $AC = \frac{1}{2}AB \Rightarrow \sin \angle ABC = \frac{1}{2}$. But ∠ADC, ∠ABC both stand on same arc AC. ∴ ∠ADC = ∠ABC = 30°	PE3
3	С	$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{-b}{-d} = \frac{b}{d}$	PE3
4	A	If $y = \log_1 x$, $x = \left(\frac{1}{a}\right)^y = a^{-y} \implies y = \log_a x$. $\log_1 x = -\log_a x$	Н3
5	С	4C_2 ways of choosing the two dice showing 'six', then 5 possible numbers on each of the remaining two dice. $:: {}^4C_2 \times 5 \times 5 = 150$ ways	PE3
6	р	$\cot 2x + \tan x = \frac{\cos 2x}{\sin 2x} + \frac{\sin x}{\cos x} = \frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} = \frac{\cos 2x + 1 - \cos 2x}{\sin 2x} = \csc 2x$	Н5
7	A	$\left(x-\frac{1}{x}\right)^{6}$ has general term ${}^{6}C_{r}\left(-\frac{1}{x}\right)^{r}x^{6-r} = {}^{6}C_{r}\left(-1\right)^{r}x^{6-2r}, \ r=0,1,,6$. For term independent of x , $6-2r=0$ $\therefore r=3$ and term is ${}^{6}C_{3}\left(-1\right)^{3}=-20$	НЕ3
8	D	$\frac{d}{dx}\sin^{-1}(2x-1) = \frac{2}{\sqrt{1-(2x-1)^2}} = \frac{2}{\sqrt{4x-4x^2}} = \frac{1}{\sqrt{x(1-x)}}$	HE4
9	A	$V = x^3$: $\frac{dV}{dt} = 3x^2 \frac{dx}{dt}$: for $x = 4$, $-6 = 3 \times 16 \frac{dx}{dt}$: $\frac{dx}{dt} = -\frac{1}{8}$	HE5
10	С	$x = 4\sin^2 t - 1 = 2(1 - \cos 2t) - 1 = 1 - 2\cos 2t$.: Centre is at $x = 1$	НЕ3

Section II

Question 11

a. Outcomes assessed: PE3

	Marking Guidelines	
• includes $x > 1$ in solution	Criteria	Marks
1	• includes x>1 in solution	1
• combines this correctly with the second inequality for x	• combines this correctly with the second inequality for x	1

Answer

$$\frac{x-1}{x+2} > 0 \Leftrightarrow (x-1)(x+2) > 0.$$

Q 11 (cont)

b. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
finds one coordinate of P	i
finds second coordinate of P	1

Answer

c. Outcomes assessed: H8, HE4

Marking Guidelines	
Criteria	Marks
• rearranges integrand and finds primitive of one term	1
completes primitive	11

Answer

$$\int \frac{1+2x}{1+x^2} dx = \int \left(\frac{1}{1+x^2} + \frac{2x}{1+x^2}\right) dx = \tan^{-1} x + \ln(1+x^2) + c$$

d. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • finds the value of the required tangent ratio	1
ii • finds the tangent of the acute angle between $y=2x$ and $y=7x$	1 1
• considers the relative positions of the three lines and the equal angles to make the deduction	1

Answer

Let α , β be the acute angles between lines y=x and y=2x, y=2x and y=7x respectively.

i.
$$\tan \alpha = \frac{2-1}{1+2\times 1} = \frac{1}{3}$$
 ii. $\tan \beta = \frac{7-2}{1+7\times 2} = \frac{1}{3}$

Hence $\alpha = \beta$ and considering the relative position of the three lines, with y = 2x an anticlockwise turn α of y = x, then y = 7x an anticlockwise turn β of y = 2x, the line y = 2x bisects angle between y = x and y = 7x.

Q11 (cont)

e. Outcomes assessed: HE2

Marking Guidennes	
Criteria	Marks
• defines an appropriate sequence of statements and verifies that the first is true	1
• writes an expression for the LHS of the (k+1)st statement conditional on the truth of the ktr	1
• rearranges to produce RHS of (k+1)st and completes the Mathematical Induction process	1

Answer

Let S(n), n=1,2,3,... be the sequence of statements defined by

$$S(n): 1\times 4 + 2\times 5 + 3\times 6 + ... + n(n+3) = \frac{1}{3}n(n+1)(n+5)$$

Consider S(1): LHS=1×4=4, RHS= $\frac{1}{4}$ ×1×2×6=4. Hence S(1) is true.

If S(k) is true: $1\times 4+2\times 5+3\times 6+...+k(k+3)=\frac{1}{3}k(k+1)(k+5)$ **

Consider S(k+1): LHS = $\{1 \times 4 + 2 \times 5 + 3 \times 6 + ... + k(k+3)\} + (k+1)(k+4)$ = $\frac{1}{3}k(k+1)(k+5) + (k+1)(k+4)$ if S(k) is true, using ** $= \frac{1}{3}(k+1)\{k(k+5) + 3(k+4)\}$ = $\frac{1}{3}(k+1)\{k^2 + 8k + 12\}$

 $= \frac{1}{3}(k+1)(k+2)(k+6)$ $= \frac{1}{3}(k+1)\{(k+1)+1\}\{(k+1)+5\}$

=RHS

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence by Mathematical Induction, S(n) is true for all integers $n \ge 1$.

f. Outcomes assessed: HE6

Marking Guideline

Marking Guidennes	
Criteria	Marks
• converts integral into a definite integral in terms of u	1
• finds the primitive	1
• evaluates	1

Answer

$$x = u - 2$$

$$dx = du$$

$$\begin{cases} x = -1 \implies u = 1 \\ x = 2 \implies u = 4 \end{cases}$$

$$\frac{3x + 5}{\sqrt{x + 2}} = \frac{3u - 1}{\sqrt{u}}$$

$$= 2\left[(8 - 1) - (2 - 1)\right]$$

$$= 12$$

Question 12

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
use the condition for three terms in AP to relate $a-b$, $b-c$.	1
apply the common ratio test for three terms in GP	1

Answe

a, b, c in AP. $\therefore a-b=c-b$ Then $\frac{e^b}{e^a}=e^{b-a}=e^{c-b}=\frac{e^c}{e^b}$. $\therefore e^a, e^b, e^c$ in GP.

b. Outcomes assessed: PE3

Marking Guidelines	·
Criteria	Marks
• invokes alternate segment theorem in either of the two circles	1
• applies same theorem to second circle to identify equal corresponding angles for PQ, RS	1
• deduces PQ RS, applying test for parallel lines	1

Answer

For circle TPQ,

∠BTP = ∠TQP (∠ between tangent and chord drawn to point of contact is equal to ∠ subtended by that chord in the alternate segment)

Similarly, for circle TRS,

 $\angle BTR = \angle TSR$

 $\therefore \angle TQP = \angle TSR \quad (\angle BTP, \angle BTR \text{ same as } T, P, R \text{ collinear})$

 $\therefore PQ \parallel RS$ (equal corresponding \angle 's on transversal TS)

c. Outcomes assessed: PE3

Marking Guidelines

Maritan Continues		_	
	Criteria ·	Marks	
	• uses factor theorem to find one equation for a and b	1	
	• uses remainder theorem to find b and hence a	1	
	deduces the required remainder	1	

Answer

$$P(x)=x(x-1)Q(x)+ax+b$$
 $(x-1)$ is a factor of $P(x)\Rightarrow P(1)=0$ $\therefore a+b=0$
Division of $P(x)$ by x leaves remainder $2\Rightarrow P(0)=2$ $\therefore b=2$ Then $a=-2$.

Using given division transformation, when P(x) is divided by x(x-1) remainder is ax+b=-2x+2

Q 12 (cont)

d. Outcomes assessed: H5, H8

Marking Guidelines	
Criteria	Marks
• expresses volume as a definite integral in terms of cos 2y	1
• finds the primitive function	1
• evaluates	1

Answer

Element of volume obtain by rotation of strip around y axis is $\delta V = \pi \cos^2 y \ \delta y$

$$V = \pi \int_{\frac{\pi}{12}}^{\frac{\pi}{12}} \cos^2 y \, dy$$

$$= \frac{\pi}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{12}} (1 + \cos 2y) \, dy$$

$$= \frac{\pi}{2} \left[y + \frac{1}{2} \sin 2y \right]_{\frac{\pi}{12}}^{\frac{\pi}{12}}$$

$$= \frac{\pi}{2} \left\{ \left(\frac{\pi}{4} - \frac{\pi}{12} \right) + \frac{1}{2} \left(\sin \frac{\pi}{2} - \sin \frac{\pi}{6} \right) \right\} \qquad \text{Volume is}$$

$$= \frac{\pi}{2} \left\{ \frac{\pi}{6} + \frac{1}{4} \right\} \qquad \qquad \frac{1}{24} \pi \left(2\pi + 3 \right) \text{ cu. units}$$

e. Outcomes assessed: HE4

Marking Gui	delines
Criteria	Marks
i • states the domain	1
• states the range	1
ii • curve of correct shape in first quadrant	1
• endpoints correct	1

Answer

i. Domain:
$$-1 \le 1 - x \le 1 \implies -1 \le x - 1 \le 1$$

Range:
$$-\frac{\pi}{2} \le \sin^{-1}(1-x) \le \frac{\pi}{2} \implies 0 \le \sin^{-1}(1-x) + \frac{\pi}{2} \le \pi$$
 $\therefore 0 \le f(x) \le \pi$

iî.

Question 13

a. Outcomes assessed: PE3

i • finds d in terms of t ii • finds FT in terms of

• finds the required ratio in terms of t

Marking Guidelines Marks Criteria 1

Answer

i.
$$F(0, a)$$
, equation of tangent $tx - y - at^2 = 0$

'n.

$$d = \frac{\left|0 - a - at^2\right|}{\sqrt{t^2 + \left(-1\right)^2}} = \frac{a\left(t^2 + 1\right)}{\sqrt{t^2 + 1}} = a\sqrt{t^2 + 1}$$

ii.
$$FT = TM = at^2 + a = a(t^2 + 1)$$

$$\frac{d}{FT} = \frac{1}{\sqrt{t^2 + 1}}$$

b. Outcomes assessed: HE5

Marking Guidelines

Marks		
1		
1 1		

Answer

$$v = (1-x)^{2}$$

$$t = 0$$

$$x = 0$$

$$t = -1$$

$$t = -1$$

$$t = \frac{1}{1-x} - 1$$

$$t = \frac{t}{t+1}$$

$$t = (1-x)^{-1} + c$$

$$t = 0$$

$$t = 0$$

$$t = -1$$

$$t = \frac{1}{1-x} - 1$$

$$t = \frac{t}{t+1}$$

c. Outcomes assessed: HE3

Marking Guidelines

manda Cuidennes	
Criteria	Marks
i • writes expression using powers of $\frac{1}{3}$, $\frac{1}{6}$, realising that there is a multiplier for the orders	1
• counts the orders correctly to evaluate the probability	1
ii • writes expression using powers of $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, realising that there is a multiplier for the orders	1 1
counts the orders correctly to evaluate the probability	1

Answer

i.
$${}^{4}C_{2}(\frac{1}{3})^{2}(\frac{1}{6})^{2}=\frac{1}{3}$$

i.
$${}^{4}C_{2}(\frac{1}{3})^{2}(\frac{1}{6})^{2} = \frac{1}{54}$$
 ii. ${}^{4}C_{2} \times 2 \times (\frac{1}{2})^{2}(\frac{1}{3})(\frac{1}{6}) = \frac{1}{6}$

O13 (cont)

d. Outcomes assessed: PE3, HE7

·Marking Guidelines	
Criteria	Marks
i • verifies that the cubic expression changes sign over the given interval	1
• notes the continuity of the function to justify the deduction	1
ii • explains why the graph of this cubic function crosses the x axis once, giving one real root	1
iil • writes a numerical expression for the next approximation	1
evaluates this approximation to the required accuracy	1

- i. Let $f(x)=x^3+2x-7$. Then f(x) is a continuous function and f(1)=-4<0, f(2)=5>0. Hence $f(\alpha)=0$ for some α such that $1<\alpha<2$.
- ii. $f'(x) = 3x^2 + 2 > 0$ for all real x. f(x) is monotonic increasing, and its graph cannot cross the x axis more than once. Hence α is the only real root of the equation.

iii.
$$\alpha_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.5 - \frac{1.5^3 + 2 \times 1.5 - 7}{3 \times 1.5^2 + 2} \approx 1.6$$
 (to 1 dec. pl.)

Question 14

a. Outcomes assessed: HE3

Marking Guidelines	
Criteria	Marks
i • verifies by differentiation that the given expression for N satisfies the differential equation	1
ii • uses the initial population size to find $P + A$	1
• uses the limiting population size to find P, then states the value of A	1 1

Answer

i.
$$N = P + Ae^{-0.1t}$$

ii.
$$t=0, N=500 \Rightarrow P+A=500$$

$$\frac{dN}{dt} = -0.1 Ae^{-0.1t}$$

$$t \rightarrow \infty$$
, $N \rightarrow 100 \Rightarrow P = 100$

$$=-0\cdot1(N-P)$$

$$\therefore A = 400$$

b. Outcomes assessed: HE3

Marking Guidelines

TIME SERVICES		
Criteria	Marks	
i • finds an expression for v^2 in terms of x by integration	1	
• uses given information to evaluate the constant of integration	1 1	
ii • finds n to determine the period	1	
• finds the possible values of x , or uses $v_{\text{max}} = nA$, to determine the amplitude	1	

Answer

i.
$$\ddot{x} = -4(x-1)$$

ii.
$$v^2 \ge 0 \implies (x-1)^2 \le 9$$

$$\frac{1}{2}\frac{dv^2}{dx} = -4(x-1)$$

$$v^2 = -4(x-1)^2 + 36$$

$$\frac{1}{2}\frac{dv^2}{dx} = -4(x-1) + \frac{1}{2}\frac{dv^2}{dx} = -4x^2 + 8x + \frac{1}{2}\frac{dv^2}{dx} = -4x^2 +$$

$$\therefore -2 \le x \le 4$$

$$n=2 \Rightarrow T = \frac{2\pi}{} = \pi$$

$$x=1, y=6 \Rightarrow c=36$$

Amplitude is 3 m, period is π s.

Q14 (cont)

c. Outcomes assessed: HE3

Marking Guidelines	
Criteria	Marks
i • writes an equation using the coefficient of x	1
• writes an equation using the coefficient of x ²	1
ii • writes an equation in a single pronumeral	1
states both values	1

Answer

i.
$$(1+ax)^n = 1+6x+16x^2+...$$

ii. (2)+(1)
$$\Rightarrow$$
 $(n-1)a=\frac{16}{3}$ (3)

$${}^{n}C_{1}a = 6 \Rightarrow na = 6$$
 (1)
 ${}^{n}C_{2}a^{2} = 16 \Rightarrow n(n-1)a^{2} = 32$ (2)

$$(3) \div (1) \Rightarrow \frac{n-1}{n} = \frac{8}{9} : n = 9, \ a = \frac{2}{3}$$

d. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
$i \cdot finds \ \dot{x} \ and \ \dot{y} \ in terms of \ t$	1
• uses given magnitude of vector sum at impact to find equation for t when particle hits ground	1
• solves equation to find time to impact	1 1
ii • uses expression for y and this value of t to find h	1 1

Answer

i.
$$x = 20t \implies \dot{x} = 20$$

$$y = 20t - 5t^2 \implies \dot{y} = 20 - 10t$$

= $-10(t - 2)$

ii. Particle hits ground when y = -h

$$-h=20t-5t^2$$

$$h=5(t-2)^2-20$$

$$h = 5 \times \frac{2304}{100} - 20$$

Hence height of cliff is 95.2 m

The vector sum of \vec{x} and \vec{y} has magnitude 52

$$10^{2} \left\{ 2^{2} + \left(t - 2 \right)^{2} \right\} = 52^{2}$$
$$\left(t - 2 \right)^{2} = \frac{52^{2}}{10^{2}} - 2^{2}$$

$$= \frac{10^2}{10^2}$$

$$= \frac{2304}{10^2}$$

$$t=2+\frac{48}{10}$$

Hence particle hits the ground after 6-8s