NSW INDEPENDENT SCHOOLS

2007 Higher School Certificate Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black or blue pen
- · Board approved calculators may be used
- · Write using black or blue pen
- Write your student number and/or name at the top of every page
- All necessary working should be shown in every question
- A table of standard integrals is provided

Total marks - 120

Attempt Questions 1 - 8

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME.....

Student name / number

Marks

2

3

Question 1

Begin a new booklet

(a) The diagram below shows the graph of the function $f(x) = \frac{x-2}{x-1}$.

On separate diagrams, sketch the following graphs, showing clearly any intercepts on the axes and the equations of any asymptotes:

- (i) y = f(-x).
- (ii) y = |f(x)|.
- (iii) y = f(|x|).
- $(iv) y = e^{f(x)}.$
- (b) The line y = mx through the origin O(0,0) is tangent to the curve $y = \frac{x-2}{x-1}$, touching it at the point $P(x_1, y_1)$.
- (i) By considering the gradient of *OP* in two different ways, show that $x_1^2 4x_1 + 2 = 0$.
- (ii) Hence find the two possible values of m.
- (c) Consider the function $y = e^{-2x} \tan x$ for $0 \le x < \frac{\pi}{2}$.
 - (i) Show that $\frac{dy}{dx} = e^{-2x}(1-\tan x)^2$.
 - (ii) Sketch the graph of the function showing the coordinates of the endpoint, the equation of the asymptote and the coordinates of the stationary point.

Student name / number

Marks Begin a new booklet

Question 2

(a)(i) Find $\int \frac{1+e^x}{1+e^{-x}} dx$.

(ii) Find
$$\int \frac{1}{\sqrt{1+x} + \sqrt{x}} dx.$$

(b) Use the substitution
$$x = \sin \theta$$
 to find $\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx$.

(c) Evaluate
$$\int_0^{\sqrt{3}} \frac{x^3 - 8x^2 + 9x}{(1+x^2)(9+x^2)} dx.$$

(d)(i) Use the substitution
$$t = \tan \frac{x}{2}$$
 to show that
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx = 1.$$

(ii) Show that
$$\int_0^a f(x) dx = \int_0^{\frac{a}{2}} \left\{ f(x) + f(a - x) \right\} dx$$
.

(iii) Hence evaluate
$$\int_0^{\pi} \frac{x}{1+\sin x} dx$$
.

Student name / number

2

Marks Question 3 Begin a new booklet

- (a)(i) Write down the expansion of $(1+ia)^4$ in ascending powers of a. 1
 - (ii) Hence find the values of a such that $(1+ia)^4$ is real.
- The equation $(\sin^2 \theta) z^2 (\sin 2\theta) z + 1 = 0$, where $0 < \theta < \frac{\pi}{2}$, has roots α and β .
 - (i) Show that the roots of the equation are $\cot \theta + i$ and $\cot \theta i$.
 - (ii) Hence show that $\alpha^n + \beta^n = \frac{2\cos n\theta}{\sin^n \theta}$. 2
- In the Argand diagram below vectors \overrightarrow{OA} and \overrightarrow{OB} represent the complex numbers $z_1 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \text{ and } z_2 = \sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right) \text{ respectively}.$

- (i) Show that $|z_2 z_1| = \sqrt{2}$.
- (ii) Show that $z_2 z_1 = i z_2$.
- (d)(i) On an Argand diagram shade the region where both $|z-2| \le 1$ and $Re(z) \le \frac{3}{2}$. 2
 - (ii) Find the set of values of Arg z for points in the shaded region.

Marks

2

2

2

2

2

Marks

3

2

3

1

2

Question 4 Begin a new booklet

- (a)(i) On the same diagram sketch the graphs of the ellipses $E_1: \frac{x^2}{4} + \frac{y^2}{3} = 1$ and $E_2: \frac{x^2}{16} + \frac{y^2}{12} = 1$, showing clearly the intercepts on the axes. Show the coordinates of the foci and the equations of the directrices of the ellipse E_1 .
 - (ii) $P(2\cos p, \sqrt{3}\sin p)$, where $0 , is a point on the ellipse <math>E_1$. Use differentiation to show that the tangent to the ellipse E_1 at P has equation $\frac{x\cos p}{2} + \frac{y\sin p}{\sqrt{3}} = 1.$
 - (iii) The tangent to the ellipse E_1 at P meets the ellipse E_2 at the points $Q(4\cos q, 2\sqrt{3}\sin q) \text{ and } R(4\cos r, 2\sqrt{3}\sin r), \text{ where } -\pi < q < \pi \text{ and } -\pi < r < \pi. \text{ Show that } q \text{ and } r \text{ differ by } \frac{2\pi}{3}.$

- (b) The hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with eccentricity e, has one focus S on the positive x-axis and the corresponding directrix d cuts the asymptotes to the hyperbola at points P and Q in the first and fourth quadrants respectively.
- (i) Show that PS is perpendicular to the asymptote through P and that PS = b.
- (ii) A circle with centre S touches the asymptotes of the hyperbola. Deduce that the points of contact are the points P and Q.
- (iii) The circle with centre S which touches the asymptotes of the hyperbola cuts the hyperbola at points R and T. If b=a, show that RT is a diameter of the circle.

Begin a	new	booklet
E	Begin a	Begin a new

- When the polynomial P(x) is divided by $(x^2 + 1)$ the remainder is Ax + B.
- (i) Show that $A = \frac{P(i) P(-i)}{2i}$ and $B = \frac{P(i) + P(-i)}{2}$.
- (ii) If P(x) is odd, find the remainder when P(x) is divided by $(x^2 + 1)$.
- (b) The equation $x^4 5x + 2 = 0$ has roots α , β , γ and δ .
 - (i) Show that the equation $x^4 5x + 2 = 0$ has a real root between x = 0 and x = 1.
 - (ii) Find the monic equation with roots α^2 , β^2 , γ^2 and δ^2 . Hence or otherwise show that $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 0$.
 - (iii) Find the number of non-real roots of $x^4 5x + 2 = 0$, giving full reasons for your answer.
- (c) A right circular inverted cone has semi-vertical angle 45°. There is a smooth hole in the top of the cone and a light, inextensible string passes through this hole. A particle Q of mass Mkg is attached to one end of this string and hangs at rest inside the cone. A second particle P of mass mkg, attached to the other end of the string, travels in a horizontal circle around the smooth outside surface of the cone with constant angular velocity ω radians per second. The length of string between P and the hole is I metres.

- (i) If the tension in the string is T Newtons, the force exerted by the surface on P is N Newtons, and the acceleration due to gravity is $g \text{ ms}^{-2}$, explain why $T + N = \sqrt{2}mg$ and $T N = ml\omega^2$.
- (ii) Find expressions for the product $l\omega^2$ and N in terms of M, m and g.
- (iii) Deduce that $\frac{\sqrt{2}}{2} \le \frac{M}{m} \le \sqrt{2}$.

Student name / number

Marks

3

3

Question 6

Begin a new booklet

(a)

The region in the first quadrant bounded by the line x + y = 4 and the rectangular hyperbola xy = 2 is rotated through one complete revolution about the y-axis.

(i) Use the method of cylindrical shells to show that the volume V of the solid formed is given by

$$V = 2\pi \int_{2-\sqrt{2}}^{2+\sqrt{2}} (4x - x^2 - 2) \, dx \, .$$

(ii) Hence find the simplest exact numerical value of the volume of the solid formed.

(b) $I_n = \int_0^1 x^n (1-x)^n dx$, n = 0, 1, 2, ...

- (i) Using the substitution $u = \frac{1}{2} x$, show that $I_n = \int_{-\frac{1}{2}}^{\frac{1}{2}} (\frac{1}{4} u^2)^n du$ and hence $I_n = \frac{n}{2(2n+1)} I_{n-1}, \quad n = 1, 2, 3, \dots$
- (ii) Show that $\int_0^1 x^5 (1-x)^5 dx = \frac{(5!)^2}{11!}$.
- (iii) Use the substitution $x = \sin^2(\frac{1}{2}t)$ to show that $\int_0^{\pi} \sin^{2n+1} t \, dt = 2^{2n+1} I_n$.

 Hence deduce that $\int_0^{\pi} \sin^{2n+1} t \, dt = \frac{2^{2n+1} (n!)^2}{(2n+1)!}$, n = 0, 1, 2, ...

Marks

2

2

1

2

1

1

2

Question 7

Begin a new booklet

(a)

In $\triangle ABC$ above, BC = a, CA = b and AB = c. D is a point on AB such that DA = m, DB = n and DC = d. CE is an altitude of the triangle with CE = h and ED = p.

- (i) Use Pythagoras' theorem in $\triangle CEA$ and $\triangle CED$ to show that $b^2 = d^2 + m^2 2mp$.
- (ii) Show similarly that $a^2 = d^2 + n^2 + 2np$.
- (iii) Hence show that $a^2m + b^2n = c(d^2 + mn)$
- (iv) In the case where CD bisects $\angle BCA$, use the sine rule in $\triangle CDA$ and $\triangle CDB$ to show that am = bn. Hence show that in this case, $d^2 = ab mn$.
- (b) In any single play of a game, n people throw a fair coin, where $n \ge 3$. The play of the game results in an 'odd one out' if all but one of the coins show heads or all but one of the coins show tails.
 - (i) Show that in any single play of the game, the probability of an 'odd one out' is $\frac{n}{2^{n-1}}.$
 - (ii) Find the probability that there is at least one 'odd one out' in N plays of the game.
 - (iii) Find the probability that the first 'odd one out' occurs on the N^{th} play of the game.
 - (iv) Find the probability that the second 'odd one out' occurs on the N^{th} play of the game.

Student name / number

Marks

2

Question 8

Begin a new booklet

- (a) A sequence of numbers x_n , n = 1, 2, 3, ... is given by $x_1 = 1$ and $x_{n+1} = \frac{2x_n^3 + 8}{3x_n^2}$, n = 1, 2, 3, ...
- (i) Use Mathematical Induction to show that $x_n > 2$ for all positive integers $n \ge 2$.
- (ii) Hence show that $x_{n+1} < x_n$ for all positive integers $n \ge 2$.
- (b) Let $f(x) = \ln(1+x) \left(x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n}\right)$ where *n* is a positive integer.
 - (i) Show that f(x) is stationary at x = 0, and show that for x > 0, f(x) is monotonic increasing if n is even, or f(x) is monotonic decreasing if n is odd.
 - (ii) Hence show that if n is a positive integer, then for all x > 0, $x \frac{x^2}{2} + \frac{x^3}{3} \dots \frac{x^{2n}}{2n} < \ln(1+x) < x \frac{x^2}{2} + \frac{x^3}{3} \dots + \frac{x^{2n-1}}{2n-1}.$
- (iii) Hence find ln(1·2) correct to 2 decimal places.

- (c) The number e is given by the value of the limiting sum $e = \sum_{r=1}^{\infty} \frac{1}{r!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$
- (i) If n is a positive integer, and $a = n! \left\{ e \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right) \right\}$, show that $0 < a < \frac{1}{n}$.
- (ii) Hence deduce that e is irrational.

STANDARD INTEGRALS
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Independent Trial HSC 2007 Mathematics Extension 2 Marking Guidelines

Question 1

a. Outcomes assessed: E6

Marking Guidelines

Criteria	Marks
i • sketches reflection in the y-axis showing intercepts on the axes and asymptotes	1
ii • reflects section of curve lying below the x-axis in x-axis, retaining asymptotes and intercepts	1
iii • sketches $y = f(x)$, $x \ge 0$ and its reflection in the y-axis	1
 shows all intercepts and asymptotes 	1
iv • sketches left hand branch of curve showing asymptotes and intercept on y-axis	1
• sketches right hand branch of curve showing asymptote and nature of curve near (1,0)	1

Answer

i.

ii.

iii.

iv.

b. Outcomes assessed: E6

Marking Guidelines

Wat king Guidelines		
Criteria	Marks	
i • uses differentiation to find one expression for gradient of tangent OP	1	
• uses coordinates of O and P to find a second expression for gradient of interval OP	1	
ii • solves the quadratic equation for x_1	1	
• substitutes for x_1 to find the two values for m	1	

Answer

$$y = \frac{x-2}{x-1}$$
Since *OP* is tangent to the parabola at
$$P(x_1, y_1), \text{ gradient of } OP \text{ is } \frac{1}{(x_1-1)^2}.$$
Hence
$$\frac{1}{(x_1-1)^2} = \frac{x_1-2}{x_1(x_1-1)}$$

$$y = 1 - \frac{1}{x-1}$$
Also gradient of *OP* is
$$\frac{y_1}{x_1} = \frac{x_1-2}{x_1(x_1-1)}.$$

$$x_1^2 - 4x_1 + 2 = 0$$

ii.
$$x_1^2 - 4x_1 + 2 = 0$$

$$(x_1 - 2)^2 = 2$$

$$x_1 - 2 = \pm \sqrt{2}$$

$$x_1 - 1 = 1 \pm \sqrt{2}$$
or $m = \frac{1}{\left(1 - \sqrt{2}\right)^2} = \frac{\left(1 - \sqrt{2}\right)^2}{1^2} = 3 - 2\sqrt{2}$

c. Outcomes assessed: E6

Marking Guidelines

Walking Guidennes	
Criteria	Marks
i • applies product rule	1
• uses trigonometric identity to simplify derivative	1
ii • sketches a rising curve with endpoint at (0,0)	1
• shows vertical asymptote at $x = \frac{\pi}{2}$	1
• shows coordinates of point of horizontal inflexion	1

i.
$$y = e^{-2x} \tan x$$
, $0 \le x < \frac{\pi}{2}$

$$\frac{dy}{dx} = -2e^{-2x} \tan x + e^{-2x} \sec^2 x$$

$$= e^{-2x} \left\{ -2 \tan x + (1 + \tan^2 x) \right\}$$

$$= e^{-2x} (1 - \tan x)^2$$

ii.
$$\frac{dy}{dx} = 0$$
 for $x = \frac{\pi}{4}$ and $\frac{dy}{dx} > 0$ for all other x values in the domain. Hence $\left(\frac{\pi}{4}, e^{-\frac{\pi}{2}}\right)$ is a point of horizontal inflexion on a rising curve.

Ouestion 2

a. Outcomes assessed: H5

Marking Guidelines

Marks
1
1
1

Answer

i.	ii.
$\int \frac{1+e^x}{1+e^{-x}} dx = \int \frac{e^x (e^{-x} + 1)}{1+e^{-x}} dx$ $= \int e^x dx$ $= e^x + c$	$\int \frac{1}{\sqrt{1+x} + \sqrt{x}} dx = \int \frac{\sqrt{1+x} - \sqrt{x}}{\left(\sqrt{1+x} + \sqrt{x}\right)\left(\sqrt{1+x} - \sqrt{x}\right)} dx$ $= \int \frac{\sqrt{1+x} - \sqrt{x}}{(1+x) - x} dx$ $= \frac{2}{3}(1+x)^{\frac{3}{2}} - \frac{2}{3}x^{\frac{1}{2}} + c$
	$= \frac{2}{3} \left\{ (1+x)\sqrt{1+x} - x\sqrt{x} \right\} + c$

b. Outcomes assessed: HE6

Marl	ing	Gu	ıide	line	es

	Criteria	Marks
i	• writes dx in terms of $d\theta$ simplifies integrand in terms of θ	1
	\bullet finds primitive in terms of θ	1
	• finds primitive in terms of x	1

Answer

$$x = \sin \theta, \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$dx = \cos \theta \, d\theta$$

$$\int \frac{1}{(1 - x^2)^{\frac{1}{2}}} \, dx = \int \frac{1}{(\cos^2 \theta)^{\frac{1}{2}}} \cos \theta \, d\theta = \int \sec^2 \theta \, d\theta$$

$$= \tan \theta + c$$

$$= \frac{x}{\sqrt{1 - x^2}} + c$$

c. Outcomes assessed: E8

Marking Guidelines

Timing Survey		
Criteria	Marks	
expresses integrand as a sum of partial fractions	1	
• finds logarithm part of primitive	1	
• finds both inverse tan parts of primitive	1	
• evaluates by substitution of limits	1	

Answei

$$\frac{x^3 - 8x^2 + 9x}{(1+x^2)(9+x^2)} \equiv \frac{ax+b}{(1+x^2)} + \frac{cx+d}{(9+x^2)}$$
$$x^3 - 8x^2 + 9x \equiv (ax+b)(9+x^2) + (cx+d)(1+x^2)$$

Equating coefficients of x^3 : a+c=1Equating coefficients of x: 9a+c=9 Equating coefficients of x^2 : b+d=-8Putting x=0 : 9b+d=0

 $\therefore a=1, \ c=0 \qquad \qquad \therefore b=1, \ d=-9$

$$\therefore \frac{x^3 - 8x^2 + 9x}{(1 + x^2)(9 + x^2)} \equiv \frac{x + 1}{1 + x^2} + \frac{-9}{9 + x^2}$$

$$\int_{0}^{\sqrt{3}} \frac{x^{3} - 8x^{2} + 9x}{(1 + x^{2})(9 + x^{2})} dx = \int_{0}^{\sqrt{3}} \left\{ \frac{1}{2} \left(\frac{2x}{1 + x^{2}} \right) + \frac{1}{1 + x^{2}} - 3 \left(\frac{3}{9 + x^{2}} \right) \right\} dx$$

$$= \left[\frac{1}{2} \ln(1 + x^{2}) + \tan^{-1} x - 3 \tan^{-1} \frac{x}{3} \right]_{0}^{\sqrt{3}}$$

$$= \frac{1}{2} (\ln 4 - \ln 1) + (\tan^{-1} \sqrt{3} - \tan^{-1} 0) - 3(\tan^{-1} \frac{1}{\sqrt{3}} - \tan^{-1} 0)$$

$$= \ln 2 + \frac{\pi}{3} - 3 \times \frac{\pi}{6}$$

$$= \ln 2 - \frac{\pi}{6}$$

d. Outcomes assessed: HE6, E8

Marking Guidelines

Criteria	Marks
i • converts dx to dt , x limits to t limits and writes $\sin x$ in terms of t	1
• finds primitive in terms of t and substitutes limits	1
ii • converts integral of $f(x)$ between $\frac{1}{2}a$ and a into integral of $f(a-x)$ between 0 and $\frac{1}{2}a$	1
• completes proof of required result	1
iii • applies result to evaluate given definite integral	1

i.
$$x = 0 \Rightarrow t = 0$$

 $t = \tan \frac{x}{2}$ $x = \frac{\pi}{2} \Rightarrow t = 1$
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx = \int_{0}^{1} \frac{1 + t^{2}}{(1 + t)^{2}} \cdot \frac{2}{1 + t^{2}} dt$$

$$dt = \frac{1}{2} \sec^{2} \frac{x}{2} dx$$

$$2 dt = (1 + t^{2}) dx$$

$$dx = \frac{2}{1 + t^{2}} dt$$

$$= \frac{1 + t^{2} + 2t}{1 + t^{2}}$$

$$= \frac{1}{1 + \sin x} = \frac{1 + t^{2}}{(1 + t)^{2}}$$

$$= 1$$

ii.
$$u = a - x$$
 $du = -dx$
$$\int_{\frac{a}{2}}^{a} f(x) dx = \int_{\frac{a}{2}}^{0} f(a - u) \cdot -du$$

$$\therefore \int_{0}^{a} f(x) dx = \int_{\frac{a}{2}}^{\frac{a}{2}} f(x) dx + \int_{\frac{a}{2}}^{a} f(x) dx$$

$$x = \frac{a}{2} \Rightarrow u = \frac{a}{2}$$

$$= \int_{0}^{\frac{a}{2}} f(a - u) du$$

$$= \int_{0}^{\frac{a}{2}} \left\{ f(x) + f(a - x) \right\} dx$$

$$x = a \Rightarrow u = 0$$

$$= \int_{0}^{\frac{a}{2}} f(a - x) dx$$

iii.
$$\int_{0}^{\pi} \frac{x}{1+\sin x} dx = \int_{0}^{\frac{\pi}{2}} \left\{ \frac{x}{1+\sin x} + \frac{\pi - x}{1+\sin(\pi - x)} \right\} dx = \int_{0}^{\frac{\pi}{2}} \left\{ \frac{x}{1+\sin x} + \frac{\pi - x}{1+\sin x} \right\} dx$$
$$\therefore \int_{0}^{\pi} \frac{x}{1+\sin x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{1+\sin x} dx = \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx = \pi$$

Ouestion 3

a. Outcomes assessed: E3

Marking Guidelines Criteria Marks i • writes expansion, simplifying powers of i ii • writes equation for a • writes three solutions for a

Answer

i.
$$(1+ia)^4 = 1 + 4ia - 6a^2 - 4ia^3 + a^4$$

ii. $(1+ia)^4$ is real if $4a-4a^3=0$. Then $a(1-a^2)=0$. $\therefore a=0, 1, -1$

b. Outcomes assessed: E3

Marking Guidelines Criteria Marks i • uses trigonometric identities to complete the square or find the discriminant 1 • solves for z using the completed square or the quadratic formula ii • uses de Moivre's theorem to write an expression for $(\cot \theta + i)^n$ 1 1 • writes a similar expression for $(\cot \theta - i)^n$ to obtain the required result by addition

Answer

i.
$$\left(\sin^2\theta\right)z^2 - \left(\sin 2\theta\right)z + 1 = 0$$
, $0 < \theta < \frac{\pi}{2}$
 $\left(\sin^2\theta\right)z^2 - 2\left(\sin\theta\cos\theta\right)z + \cos^2\theta = \cos^2\theta - 1$
 $\left\{\left(\sin\theta\right)z - \cos\theta\right\}^2 = -\sin^2\theta$
 $\left(\sin\theta\right)z - \cos\theta = \pm i\sin\theta$
 $\therefore z - \frac{\cos\theta}{\sin\theta} = \pm i$
 $z = \cot\theta \pm i$
 \therefore equation has roots $\cot\theta + i$, $\cot\theta - i$

ii.
$$\alpha = \cot \theta + i = \frac{1}{\sin \theta} \left(\cos \theta + i \sin \theta \right) \implies \alpha^n = \frac{1}{\sin^n \theta} \left(\cos n\theta + i \sin n\theta \right)$$
 (by De Moivre's theorem)

Then $\beta = \cot \theta - i = \overline{\alpha} \implies \beta^n = \overline{\alpha^n} = \frac{1}{\sin^n \theta} \left(\cos n\theta - i \sin n\theta \right)$

Then $\beta = \cot \theta - i = \overline{\alpha} \implies \beta^n = \overline{\alpha^n} = \frac{1}{\sin^n \theta} \left(\cos n\theta - i \sin n\theta \right)$

Hence $\alpha^n + \beta^n = \frac{2\cos n\theta}{\sin^n \theta}$

c. Outcomes assessed: E3

Criteria	Marks
i • writes an expression for the square of AB using the cosine rule in triangle AOB	1
• deduces the value of $ z_2 - z_1 $	1
ii • shows that $\angle OBA = \frac{\pi}{2}$	1
 uses rotation of vectors to deduce required result. 	1

Answer

i. In
$$\triangle AOB$$
, $AB^2 = 2 + 4 - 2 \times \sqrt{2} \times 2\cos\frac{\pi}{4} = 2$
 $\therefore |z_2 - z_1| = AB = \sqrt{2}$

ii. $\triangle AOB$ is isosceles, since $OB = AB = \sqrt{2}$ $\therefore \angle OAB = \angle AOB = \frac{\pi}{4}$, and hence $\angle OBA = \frac{\pi}{2}$.

 $\therefore \overrightarrow{AB}$ is an anticlockwise rotation of \overrightarrow{OB} by $\frac{\pi}{2}$.

But \overrightarrow{AB} represents $z_2 - z_1$. $\therefore z_2 - z_1 = i z_2$

d. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • shades a region inside the appropriate circle	1
• shades region that also lies to the left of appropriate vertical line	1
ii • shows that tangents to circle from O have points of contact that lie in the shaded region	1 1
• deduces set of values of Arg z from the angles of inclination of these tangents	1

ii.

Answer

 $\cos \angle OCP = \frac{\left(\frac{1}{2}\right)}{1} = \frac{1}{2} \quad \therefore \angle OCP = \frac{\pi}{3}$

Hence $\triangle OCP$, $\triangle OCQ$ are congruent SAS to

Hence OP and OQ are tangents to the circle and P, Qrepresent z with max, min values of Arg z.

The set of values of Arg z is $\left\{\theta : -\frac{\pi}{6} \le \theta \le \frac{\pi}{6}\right\}$.

Question 4

a. Outcomes assessed: E3

Marking Guidelines

Marking Guidennes	
Criteria	Marks
i • sketches E, with correct intercepts on axes	1
• sketches E_2 with correct intercepts on axes	1
\bullet shows foci for E_1	1
$ullet$ shows directrices for $E_{\rm l}$	1 1
ii • finds gradient of tangent by differentiation	1
• writes expression for equation of tangent	1
 uses trig. identity to simplify this equation into required form 	1
iii • writes equation for parameter t for point on E_2 where tangent to E_1 at P cuts E_2	1
• writes parameters at Q , R in terms of p to deduce result	1

Answer

ii.

$$x = 2\cos p \qquad y = \sqrt{3}\sin p$$

$$\frac{dx}{dp} = -2\sin p \qquad \frac{dy}{dp} = \sqrt{3}\cos p$$

$$\therefore \frac{dy}{dx} = \frac{\sqrt{3}\cos p}{-2\sin p}$$

Tangent at P has gradient $-\frac{\sqrt{3}\cos p}{2\sin p}$

and equation $(\sqrt{3}\cos p)x + (2\sin p)y = k$ for some constant k.

P on tangent $\Rightarrow 2\sqrt{3}\cos^2 p + 2\sqrt{3}\sin^2 p = k$ $\therefore k = 2\sqrt{3}$

 \therefore Tangent at P is $\frac{x \cos p}{2} + \frac{y \sin p}{\sqrt{3}} = 1$

iii. Tangent to E_1 at P meets E_2 at point $(4\cos t, 2\sqrt{3}\sin t)$ where

$$\frac{4\cos t\cos p}{2} + \frac{2\sqrt{3}\sin t\sin p}{\sqrt{3}} = 1$$
$$2(\cos t\cos p + \sin t\sin p) = 1$$
$$\cos(t - p) = \frac{1}{2}$$

Also $0 and <math>-\pi < t < \pi$

$$\therefore t - p = \pm \frac{\pi}{3}$$

Hence one of Q, R has parameter $p + \frac{\pi}{3}$, and the other has parameter $p - \frac{\pi}{3}$.

Hence q and r differ by $\frac{2\pi}{3}$.

b. Outcomes assessed: E3, E4

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • finds the gradient of PS in terms of a, b, e	1
• uses the relationship between a, b, e to deduce that PS and OP are perpendicular	1
• uses either distance formula to show that $PS = b$	1
ii • uses a geometric argument to deduce required result	1
iii • finds the x coordinates of R , T in terms of a , b , e	1
• shows that if $a = b$ then R, S, T each have x coordinate $a\sqrt{2}$ to deduce required result	1 1

Answer

i. S has coordinates (ae, 0) and d has equation $x = \frac{a}{a}$. At P,

$$x = \frac{a}{e}, \ y = \frac{b}{a}x$$
 $\therefore P\left(\frac{a}{e}, \frac{b}{e}\right)$ and

gradient
$$PS = \frac{\left(\frac{b}{e}\right)}{\left(\frac{a}{e} - ae\right)} = \frac{b}{a(1 - e^2)}$$

 \therefore product of gradients of PS and OP

is
$$\frac{b^2}{a^2(1-e^2)} = \frac{b^2}{-b^2} = -1$$
.

Also $PS^2 = (\frac{a}{e} - ae)^2 + (\frac{b}{e})^2$ $= \frac{1}{e^2} \left\{ a^2 (1 - e^2)^2 + b^2 \right\}$ $= \frac{1}{e^2} \left\{ -b^2 (1 - e^2) + b^2 \right\}$ $= b^2$ $\therefore PS = b$

ii. Since the perpendicular distance of S from the asymptote OP is b, the circle with centre S that touches this asymptote has radius b and point of contact P, since PS = b and PS \(\perp OP\).
By symmetry, QS \(\perp OQ\) and QS = b.
Hence Q is the point of contact of this same circle (centre S, radius b) with the asymptote OQ.

iii. Since SR = ST = b, at R, T the locus definition of the hyperbola gives $b = e\left(x - \frac{a}{e}\right)$. $\therefore x = \frac{a+b}{e}$

If
$$a = b$$
, $e^2 = \frac{b^2}{a^2} + 1 = 2$.

Then S has x coordinate $a\sqrt{2}$, and at R and T, $x = 2\frac{a}{e} = a\sqrt{2}$. Hence if a = b, R, S and T are collinear and RT is the diameter of the circle.

Hence $PS \perp OP$.

Question 5

a. Outcomes assessed: E4

Criteria	Marks
i • writes division transformation and expressions for $P(i)$, $P(-i)$ in terms of A and B	1
• solves simultaneous equations to find A and B in terms of $P(i)$ and $P(-i)$	1
ii • deduces B is zero	1
 deduces value of A and hence writes down remainder 	1

i.
$$P(x) \equiv (x^2 + 1) \cdot Q(x) + Ax + B$$
 for some polynomial $Q(x)$.
 $P(i) = 0 \cdot Q(i) + Ai + B \implies Ai + B = P(i)$ (1)
 $P(-i) = 0 \cdot Q(-i) - Ai + B \implies -Ai + B = P(-i)$ (2)
 $(1) - (2) \implies 2Ai = P(i) - P(-i) \implies A = \frac{P(i) - P(-i)}{2i}$
 $(1) + (2) \implies 2B = P(i) + P(-i) \implies B = \frac{P(i) + P(-i)}{2}$

ii.
$$P(x)$$
 odd $\Rightarrow P(-i) = -P(i)$ $\therefore A = \frac{P(i)}{i}$ and $B = 0$. Hence remainder is $\frac{P(i)}{i}x$

b. Outcomes assessed: E4

Marking Guidelines	
Criteria	Marks
i • notes that expression is continuous and shows it changes sign between $x = 0$ and $x = 1$	1
ii ● finds required monic polynomial equation	1
• deduces the value of the sum of squares of α , β , γ , δ from the coefficient of x^3	1
iii • deduces that not all the roots are real	1
 explains why there are exactly two non-real roots 	1

Answer

i. Let
$$f(x) = x^4 - 5x + 2$$

Then
$$f(0) = 2 > 0$$
 and $f(1) = -2 < 0$.

Since f is continuous, f(x) = 0 for some real x such that 0 < x < 1.

Hence $x^4 - 5x + 2 = 0$ has a real root between x = 0 and x = 1.

ii.
$$\alpha^2$$
, β^2 , γ^2 , δ^2 are roots of $(x^{\frac{1}{2}})^4 - 5(x^{\frac{1}{2}}) + 2 = 0$

$$x^2 + 2 = 5x^{\frac{1}{2}}$$

$$(x^2 + 2)^2 = 25x$$

$$x^4 + 4x^2 - 25x + 4 = 0$$

Since for this equation the coefficient of x^3 is 0, $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 0$.

iii. Let α be the real root which satisfies $0 < \alpha < 1$.

Then
$$\beta^2 + \gamma^2 + \delta^2 = -\alpha^2 < 0$$
. Hence not all of β , γ , δ are real.

Since the coefficients of $x^4 - 5x + 2 = 0$ are real, the complex conjugate of any non-real root is also a root of the equation. Hence two of β , γ , δ are non-real complex conjugates, while he remaining root must then be real. Hence the equation has exactly two non-real roots.

c. Outcomes assessed: E5

Criteria	Marks
i • resolves forces on P, using zero vertical component of resultant to obtain first equation	1
• uses horizontal component of magnitude $mr\omega^2$ to obtain second equation	1
ii • writes required expression for N	1
$ullet$ writes required expression for $l\omega^2$	1
iii • uses $N \ge 0$ to deduce upper limit	1
• uses $l\omega^2 \ge 0$ to deduce lower limit	1 1

Answer

Forces on P

Since P is travelling with constant angular velocity in a horizontal circle, the resultant force on P is directed horizontally toward the centre of the circle with magnitude $mr\omega^2$. Hence resolving horizontally and vertically,

$$T\cos 45^\circ + N\cos 45^\circ = mg \implies T + N = mg\sqrt{2}$$

$$T\sin 45^{\circ} - N\sin 45^{\circ} = mr\omega^{2} \implies T - N = ml\omega^{2}$$
 (since $r = l\sin 45^{\circ}$)

Forces on O

Since Q is in equilibrium, T = Mg

$$\therefore N = mg\sqrt{2} - Mg \text{ and } ml\omega^2 = Mg - N \implies l\omega^2 = 2g\frac{M}{m} - g\sqrt{2}$$

iii.
$$N = mg\left(\sqrt{2} - \frac{M}{m}\right)$$
 and $l\omega^2 = 2g\left(\frac{M}{m} - \frac{\sqrt{2}}{2}\right)$

But
$$N \ge 0$$
 and $l\omega^2 \ge 0$. Hence $\frac{\sqrt{2}}{2} \le \frac{M}{m} \le \sqrt{2}$.

Question 6 H5, E7

a. Outcomes assessed:

Marking Guidelines

Wat King Guidennes	
Criteria	Marks
$i \bullet finds x$ coordinates at P and Q	1
• finds volume of cylindrical shell in terms of x and δx	1
• writes V as limiting sum and hence as integral	1
ii • finds a primitive function (with or without an appropriate substitution)	1
• substitutes limits	1
• simplifies exact numerical value	1

Answer

At .	P, Q	x + y = 4	and	xy = 2
<i>:</i> .	$x^{2} +$	xy = 4x		
	$x^2 +$	-2 = 4x		
	$x^2 - x^2$	4x = -2		
	(x -	$(2)^2 = 2$		
∴.		$x = 2 \pm \gamma$	$\sqrt{2}$	

$$\delta V = \pi \left\{ (x + \delta x)^2 - x^2 \right\} h$$

$$= \pi \left(2x + \delta x \right) \delta x \left\{ (4 - x) - \frac{2}{x} \right\}$$

$$= \pi \frac{(2x + \delta x) \delta x}{x} \left(4x - x^2 - 2 \right)$$

Then, ignoring second order terms in $(\delta x)^2$

$$V = \lim_{\delta x \to 0} \sum_{2-\sqrt{2}}^{2+\sqrt{2}} 2\pi (4x - x^2 - 2) \delta x$$
$$= 2\pi \int_{2-\sqrt{2}}^{2+\sqrt{2}} (4x - x^2 - 2) dx$$

ii.
$$V = 2\pi \int_{2-\sqrt{2}}^{2+\sqrt{2}} \left\{ 2 - (x-2)^2 \right\} dx$$
. $V = 2\pi \int_{-\sqrt{2}}^{\sqrt{2}} (2-u^2) du$

Making the substitution $u = x - 2$, $= 4\pi \int_{0}^{\sqrt{2}} (2-u^2) du$

$$= 4\pi \int_{0}^{\sqrt{2}} (2-u^2) du$$

$$= 4\pi \left[2u - \frac{1}{3}u^3 \right]_{0}^{\sqrt{2}}$$

$$= 4\pi \left\{ 2\sqrt{2} - \frac{1}{3}(2\sqrt{2}) \right\}$$

$$= \frac{16\pi\sqrt{2}}{2}$$

b. Outcomes assessed: HE6, E8

Marking Guidelines			
Criteria	Marks		
i • makes substitution	1		
• uses integration by parts	1		
• rearranges new integrand into powers of $(\frac{1}{4}-u^2)$	1 1		
obtains required reduction formula	1		
ii • uses reduction formula to find expression for I_5 in terms of I_0	1		
 evaluates and rearranges into required form 	1		
iii • expresses dx in terms of dt , and converts t limits to x limits	1		
 uses trigonometric identities to convert integrand into required form 	1		
• generalises expression for I_5 to obtain similar expression for I_6 and hence deduce result	1		

Answer

i.
$$I_n = \int_0^1 x^n (1-x)^n dx$$
, $n = 0, 1, 2, ...$

Hence for $n = 1, 2, 3, ...$
 $u = \frac{1}{2} - x$
 $du = -dx$
 $x = 0 \Rightarrow u = \frac{1}{2}$
 $x = 1 \Rightarrow u = -\frac{1}{2}$
 $x(1-x) = (\frac{1}{2}-u)(\frac{1}{2}+u)$
 $x = \frac{1}{4}-u^2$
 $x = 1 \Rightarrow u = -\frac{1}{4}$
 $x = 0 \Rightarrow u = \frac{1}{2}$
 $x = 1 \Rightarrow u = -\frac{1}{2}$
 $x = 0 \Rightarrow u = \frac{1}{2}$
 $x = 0 \Rightarrow u = \frac{1}{4}$
 $x = 0 \Rightarrow u$

ii.
$$I_0 = \int_0^1 1 \, dx = 1$$

$$I_5 = \frac{5}{2 \times 11} I_4 = \frac{5}{2 \times 11} \cdot \frac{4}{2 \times 9} I_3 = \dots = \frac{5}{2 \times 11} \cdot \frac{4}{2 \times 9} \cdot \frac{3}{2 \times 7} \cdot \frac{2}{2 \times 5} \cdot \frac{1}{2 \times 3} I_0$$

$$\therefore I_5 = \frac{5^2}{11 \times (2 \times 5)} \cdot \frac{4^2}{9 \times (2 \times 4)} \cdot \frac{3^3}{7 \times (2 \times 3)} \cdot \frac{2^2}{5 \times (2 \times 2)} \cdot \frac{1^2}{3 \times 2 \times 1} = \frac{(5!)^2}{11!}$$

iii.

$$x = \sin^2(\frac{1}{2}t)$$

$$dx = \sin(\frac{1}{2}t)\cos(\frac{1}{2}t) dt$$

$$t = 0 \Rightarrow x = 0$$

$$t = \pi \Rightarrow x = 1$$

$$2dx = \sin t dt$$

$$\sin^2 t = 2^2 \sin^2(\frac{1}{2}t)\cos^2(\frac{1}{2}t)$$

$$= 2^2 \sin^2(\frac{1}{2}t)\left\{1 - \sin^2(\frac{1}{2}t)\right\}$$

$$= 2^2 x(1 - x)$$

Hence for n = 0, 1, 2, ...

$$\int_0^{\pi} \sin^{2n+1} t \, dt = \int_0^{\pi} (\sin^2 t)^n \sin t \, dt$$
$$= 2^{2n} \int_0^1 x^n (1-x)^n \cdot 2 \, dx$$
$$= 2^{2n+1} I$$

But for n = 1, 2, ...

and for
$$n = 0$$

$$I_{n} = \frac{n}{2(2n+1)} \cdot \frac{n-1}{2(2n-1)} \cdot \frac{n-2}{2(2n-3)} \cdot \dots \cdot \frac{1}{2(3)} I_{0}$$

$$= \frac{n^{2}}{(2n+1)2n} \cdot \frac{(n-1)^{2}}{(2n-1)(2n-2)} \cdot \frac{(n-2)^{2}}{(2n-3)(2n-4)} \cdot \dots \cdot \frac{1^{2}}{3 \times 2 \times 1}$$

$$= \frac{(n!)^{2}}{(2n+1)!}$$

$$\therefore \int_{0}^{\pi} \sin^{2n+1} t \, dt = \frac{2^{2n+1} (n!)^{2}}{(2n+1)!} , \quad n = 0, 1, 2, \dots$$

Ouestion 7

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • writes appropriate expression from Pythagoras' theorem in each triangle	1
• eliminates h to obtain require result	1
ii • writes expression from applying Pythagoras' theorem to an appropriate third triangle	1
• eliminates h to obtain required result	1
iii • combines expressions from i. and ii., using $c = m + n$	1
iv • writes appropriate pair of equal ratios derived from sine rule for each specified triangle	1
• uses fact that $\angle CDB$, $\angle CDA$ are supplementary to deduce $\sin \angle CDB = \sin \angle CDA$	1
• deduces that $am = bn$ if CD bisects $\angle BCA$	1
• uses this equality and iii. to deduce required result	1

M - -1--- - C---- 1-1---

i. In
$$\triangle CEA$$
, $b^2 = h^2 + (m-p)^2$. In $\triangle CED$, $h^2 = d^2 - p^2$
 $\therefore b^2 = (d^2 - p^2) + (m^2 - 2mp + p^2) = d^2 + m^2 - 2mp$

ii. In
$$\triangle CEB$$
, $a^2 = h^2 + (p+n)^2$
 $\therefore a^2 = (d^2 - p^2) + (n^2 + 2np + p^2) = d^2 + n^2 + 2np$

iii.
$$a^2m + b^2n = d^2(m+n) + n^2m + m^2n$$

 $\therefore a^2m + b^2n = (m+n)(d^2+mn) = c(d^2+mn)$

iv. In
$$\triangle CDA$$
, $\frac{\sin \angle ACD}{m} = \frac{\sin \angle CDA}{b} \implies \frac{b}{m} = \frac{\sin \angle CDA}{\sin \angle ACD}$
In $\triangle CDB$, $\frac{\sin \angle BCD}{n} = \frac{\sin \angle CDB}{a} \implies \frac{a}{n} = \frac{\sin \angle CDB}{\sin \angle BCD}$

But $\sin \angle CDB = \sin(180^{\circ} - \angle CDA) = \sin \angle CDA$.

If CD bisects $\angle BCA$, $\angle BCD = \angle ACD$

Then

$$\frac{a}{n} = \frac{b}{m} \qquad c(d^2 + mn) = a^2m + b^2n \qquad \therefore d^2 + mn = ab$$

$$= a(am) + b(bn) \qquad d^2 = ab - mn$$

$$= a(bn) + b(am)$$

$$= ab(m+n)$$

$$= abc$$

b. Outcomes assessed: HE3

Marking Guidelines	T
Criteria	Marks
i • finds probability of either 1 head and $(n-1)$ tails, or of 1 tail and $(n-1)$ heads	1
adds these to find the required probability	1
ii • uses the complementary event to find an expression for this probability	1
iii • finds the required probability	1
iv • states probability is zero for $N=1$, and considers how this event can occur if $N \ge 2$	1
• writes probability for $N \ge 2$	1

Answer

i. For
$$n = 3, 4, 5, ...$$
, $P(odd one out) = P(1 tail and n - 1 heads) + P(1 head and n - 1 tails)$

$$\therefore P(odd \ one \ out) = n \times \frac{1}{2} \times (\frac{1}{2})^{n-1} + n \times \frac{1}{2} \times (\frac{1}{2})^{n-1} = \frac{n}{2^{n-1}}$$

ii. P(at least one 'odd one out') = 1 - P(none)

$$=1-\left(1-\frac{n}{2^{n-1}}\right)^N$$

iii. Require probability that 'odd one out' does not occur during first (N-1) plays, then does occur on N^{th} play. Hence probability is $\frac{n}{2^{n-1}} \left(1 - \frac{n}{2^{n-1}}\right)^{N-1}$

iv. For N=1, this probability is clearly 0.

For $N \ge 2$, require exactly one 'odd one out' occurs during first (N-1) plays, then 'odd one out' occurs again on Nth play.

Hence probability is

$$(N-1)\left(\frac{n}{2^{n-1}}\right)\left(1-\frac{n}{2^{n-1}}\right)^{N-2}\left(\frac{n}{2^{n-1}}\right) = (N-1)\left(\frac{n}{2^{n-1}}\right)^2\left(1-\frac{n}{2^{n-1}}\right)^{N-2}$$

Question 8

a. Outcomes assessed: HE2, HE3

Criteria Criteria	Marks
i • defines a sequence of statements and shows the first is true	1
• writes $x_{k+1} - 2$ in terms of x_k , factoring the cubic numerator	1 1
• deduces the truth of $S(k+1)$ conditional on the truth of $S(k)$, then completes the induction	1
ii • writes expression for $x_{n+1} \div x_n$	1
• shows $x_{n+1} + x_n < 1$ for $x_n > 2$ to deduce result	1

Answer

i.
$$x_1 = 1$$
 and $x_{n+1} = \frac{2x_n^3 + 8}{3x_n^2}$, $n = 1, 2, 3, ...$

Define a sequence of statements S(n), n = 2, 3, 4, ... by S(n): $x_n > 2$

Consider
$$S(2)$$
: $x_2 = \frac{2x_1^3 + 8}{3x_1^2} = \frac{2 + 8}{3} > 2$ $\therefore S(2)$ is true.

If
$$S(k)$$
 is true: $x_k > 2$.

Consider $S(k+1)$: $x_{k+1} = \frac{2x_k^3 + 8}{3x_k^2}$

$$x_{k+1} = \frac{2x_k + 1}{3x_k^2}$$

$$x_{k+1} - 2 = \frac{2x_k^3 + 8 - 6x_k^2}{3x_k^2}$$

$$= \frac{2(x_k^3 - 3x_k^2 + 4)}{3x_k^2}$$

$$= \frac{2(x_k + 1)(x_k^2 - 4x_k + 4)}{3x_k^2}$$

$$= \frac{2(x_k + 1)(x_k - 2)^2}{3x_k^2}$$
> 0 if $S(k)$ is true, using **

Hence if S(k) is true, then S(k+1) is true. But S(2) is true, hence S(3) is true, and then S(4) is true and so on. Hence $x_n > 2$ for n = 2, 3, 4, ...

ii.
$$x_{n+1} = \frac{2x_n^3 + 8}{3x_n^2}$$
, $n = 1, 2, 3, ...$ But $x_n > 2 \Rightarrow \frac{2}{x_n} < 1$ for $n = 2, 3, 4, ...$

$$\frac{x_{n+1}}{x_n} = \frac{2x_n^3 + 8}{3x_n^3}$$
Hence $\frac{x_{n+1}}{x_n} < \frac{2}{3} + \frac{1}{3} \times 1^3 = 1$ for $n = 2, 3, 4, ...$

$$\vdots x_{n+1} < x_n \text{ for all positive integers } n \ge 2$$

b. Outcomes assessed: H5, HE3

-		~ .		• •
/VI o	ırking	(drive	de	me

Marining Conditioned			
Criteria	Marks		
i • uses sum formula for geometric progression to simplify expression for $f'(x)$	1		
• deduces required properties of $f(x)$	1		
ii • explains why for $x > 0$, $f(x) > 0$ for even n and $f(x) < 0$ for n odd	1		
• identifies $2n$ as even and $2n-1$ as odd to deduce required result	1		
iii • selects an appropriate value of n to evaluate ln(1 2) correct to two decimal places	1		

Answer

i.
$$f(x) = \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}\right)$$
$$f'(x) = \frac{1}{1+x} - \left(1 - x + x^2 - x^3 \dots + (-1)^{n-1} x^{n-1}\right)$$
$$= \frac{1}{1+x} - \frac{\left\{1 - (-x)^n\right\}}{1+x}$$
$$= \frac{(-x)^n}{1+x}$$

f'(0) = 0 and f(x) is stationary at x = 0.

Also for x > 0, when n is even, f'(x) > 0 and f is monotonic increasing when n is odd, f'(x) < 0 and f is monotonic decreasing

ii. $f(0) = \ln 1 - 0 = 0$

Hence for x > 0, if n is even, f(x) > 0 since f is monotonic increasing if n is odd, f(x) < 0 since f is monotonic decreasing

Hence for x > 0, if n is even, $\ln(1+x) > x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}$ if n is odd, $\ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}$

But for positive integers n, 2n is even and (2n-1) is odd.

$$\therefore x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{2n}}{2n} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2n-1}}{2n-1}$$

iii.

x	$x-\frac{x^2}{2}$	$x - \frac{x^2}{2} + \frac{x^3}{3}$
0 · 2	0.18	0·182Ġ

$$\therefore 0.18 < \ln(1.2) < 0.182\dot{6}$$

$$\ln(1.2) \approx 0.18$$
 (correct to 2 decimal places)

c. Outcomes assessed: HE3, E9

• argues by contradiction that e must be irrational

 Marking Guidelines

 Criteria
 Marks

 i • writes a as infinite sum and deduces a > 0 1

 • compares this sum with the sum of a geometric progression
 1

 • finds the limiting sum of this G.P. to deduce the required inequality for a 1

 ii • if e rational, uses definition of a rational number to select a value of n for which a is integral
 1

Answer

i.
$$e = \sum_{r=0}^{\infty} \frac{1}{r!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$$

$$a = n! \left\{ e - \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) \right\}$$

$$= n! \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \dots \right) \quad *$$

$$= \frac{1}{n+1} + \frac{1}{(n+2)(n+1)} + \frac{1}{(n+3)(n+2)(n+1)} + \dots$$

$$< \frac{1}{n+1} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} + \dots \quad \text{(limiting sum of a G.P)}$$

$$= \frac{\left(\frac{1}{n+1} \right)}{1 - \left(\frac{1}{n+1} \right)} \quad \text{(since } \left| \frac{1}{n+1} \right| < 1 \text{ for } n = 1, 2, 3, \dots)$$

$$= \frac{1}{(n+1)-1}$$

$$= \frac{1}{n}$$

Clearly from * above, a > 0 . $\therefore 0 < a < \frac{1}{n}$ for n = 1, 2, 3, ...

ii. Suppose e is rational. Then $e = \frac{p}{q}$ for some positive integers p, q with no common factor.

Let
$$n = q$$
. Then $a = q! \left\{ \frac{p}{q} - \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{q!} \right) \right\}$

Now each of q, 2!, 3!,..., q! is a factor of q!.

Hence a must be an integer.

But there is no integer a such that $0 < a < \frac{1}{a}$

Hence e must be irrational.

Independent HSC Trial Examination 2007 Mathematics Extension 2 Mapping Grid

Question	Marks	Content	Syllabus Outcomes	Targeted Performance Bands
1 ai	1	Graphs	E6	E2-E3
a ii	1	Graphs	E6	E2-E3
a iii	2	Graphs	E6	E2-E3
a iv	2	Graphs	E6	E2-E3
b i	2	Graphs	E6	E2-E3
b ii	2	Graphs	E6	E2-E3
сi	2	Graphs	E6	E2-E3
c ii	3	Graphs	E6	E2-E3
2 a i	1	Integration	H5	E2-E3
a ii	2	Integration	H5	E2-E3
b	3	Integration	HE6	E2-E3
c	4	Integration	E8	E2-E3
d i	2	Integration	HE6	E2-E3
d ii	2	Integration	E8	E2-E3
d iii	$\frac{2}{1}$	Integration	E8	E2-E3
4 111		Illogiation		
3 a i	1	Complex numbers	E3	E2-E3
a ii	2	Complex numbers	E3	E2-E3
bi	2	Complex numbers	E3	E2-E3
b ii	2	Complex numbers	E3	E2-E3
ci	2	Complex numbers	E3	E3-E4
c ii	2	Complex numbers	E3	E3-E4
d i	2	Complex numbers	E3	E2-E3
d ii	2	Complex numbers	E3	E2-E3
0 11	2	Complex numbers		
1 0 :	4	Conics	E3	E2-E3
4 a i a ii	3	Conics	E3	E2-E3
a iii	2	Conics	E3	E2-E3
b i	3	Conics	E3, E4	E2-E3
b ii	1	Conics	E3, E4	E2-E3
b iii	2	Conics	E3, E4	E2-E3
D 111	4	Collics	133, 2 .	
5 0 1	2	Polynomials	E4	E2-E3
<u>5 a i</u>	2	Polynomials	E4	E2-E3
a ii		Polynomials	E4	E2-E3
<u>bi</u>	1		E4	E2-E3
b ii	2	Polynomials	E4	E2-E3
b iii	2	Polynomials	E5	E3-E4
<u>ci</u>	2	Mechanics	E5	E3-E4
c ii	2	Mechanics	E5	E3-E4
c iii	2	Mechanics	EJ	155-154
6 ai	3	Volumes	E7	E3-E4
a ii	3	Integration	H8	E2-E3
b i	4	Integration	HE6, E8	E3-E4
b ii	2	Integration	E8	E3-E4
b iii	3	Integration	HE6, E8	E3-E4
D 111				

Question	Marks	Content	Syllabus Outcomes	Targeted Performance Bands
7 ai	2	Plane geometry	H5	E2-E3
a ii	2	Plane geometry	H5	E2-E3
a iii	1	Plane geometry	H5	E2-E3
a iv	4	Plane geometry	H5	E2-E3
bi	2	Probability	HE3	E3-E4
b ii	1	Probability	HE3	E3-E4
b iii	1	Probability	HE3	E3-E4
b iv	2	Probability	HE3	E3-E4
8 ai	3	Induction	HE2	E3-E4
a ii	2	Inequalities	HE3	E3-E4
bi	2	Differentiation	H5	E3-E4
b ii	2	Inequalities	HE3	E3-E4
b iii	1	Inequalities	HE3	E3-E4
сi	3	Inequalities	HE3	E3-E4
c ii	2	Inequalities	E9	E3-E4

The Trial HSC examination, marking guidelines/suggested answers and 'mapping grid' have been produced to help prepare students for the HSC to the best of our ability.

Individual teachers/schools may alter parts of this product to suit their own requirement.