INDEPENDENT SCHOOLS

2009 Higher School Certificate Trial Examination

Mathematics

Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 120

- Attempt Questions 1 − 8
- All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

TABLE OF STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}; \quad n \neq -1$$

$$\int_{-r}^{1} dx = \ln x, \quad x > 0$$

Note: $\ln x = \log_a x$, x > 0

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \qquad \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Marks

Marks

2

Question 1

Begin a new booklet

a) Find $\int \frac{(x+1)^2}{x} dx$.

- (b)(i) Find constants A, B, C and D such that $\frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 4}$.
 - (ii) Hence evaluate $\int_0^2 \frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} dx.$
- (c) Use the substitution $t = \tan \frac{x}{2}$ to find $\int \frac{1}{5 + 4\cos x + 3\sin x} dx$.
- (d) Use the substitution $u = \sin x$ to evaluate $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin^2 x}} dx$.
- (e) Use the substitution u = -x to evaluate $\int_{-1}^{1} \frac{1}{e^x + 1} dx$.

Question 2	Begin a new booklet

(a) If $z_1 = 3i$ and $z_2 = 1 + i$, find the values of

(i) $\left|z_1-z_2\right|$.

(ii) $z_1 + \overline{z}_2$.

(b)(i) If $z = 1 + i\sqrt{3}$, express z, z^2 and $\frac{1}{z}$ in modulus-argument form.

(ii) If the points A and B represent the complex numbers z^2 and $\frac{1}{z}$ in the Argand diagram, show that A, O and B are collinear, where O is the origin.

A

(c)

In the Argand diagram, vectors \overrightarrow{OA} and \overrightarrow{OB} represent the complex numbers $z_1 = 2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$ and $z_2 = 2(\cos\frac{7\pi}{15} + i\sin\frac{7\pi}{15})$ respectively.

(i) Show that $\triangle OAB$ is equilateral.

(ii) Express $z_2 - z_1$ in modulus-argument form.

(d) z is a complex number such that $\arg z = \frac{\pi}{3}$ and $|z| \le 2$.

(i) Show the locus of the point P representing z in the Argand diagram.

(ii) Find the possible values of the principal argument of z-i for z on this locus.

Student name / number

Marks

Question 3

Begin a new booklet

(a)

This diagram shows the graph of the function $f(x) = \sqrt{x} - 2$.

On separate diagrams sketch the following graphs, showing clearly any intercepts on the coordinate axes and the equations of any asymptotes:

(i)
$$y = |f(x)|$$
.

1

(ii)
$$y = \{f(x)\}^2$$
.

1

(iii)
$$y = \frac{1}{f(x)}$$
.

2

3

(iv)
$$y = \log_e f(x)$$
.

2

(b)

The tangent to the curve $y = \sqrt{x - a}$, where a > 0, at the point $P(x_1, y_1)$ on the curve passes through the origin. Find the coordinates of P.

(c)

- (i) Use the trapezoidal rule with *n* function values to approximate $\int_{1}^{n} \ln x \, dx$.
- 2
- (ii) Show that $\frac{d}{dx}(x \ln x x) = \ln x$ and hence find the exact value of $\int_1^n \ln x \, dx$.
- 2

(iii) Deduce that $\ln n! < (n + \frac{1}{2}) \ln n - n + 1$.

Marks

2

3 .

3

Student name / number

Question 4 Begin a new booklet

- (a) The polynomial P(x) leaves a remainder of 9 when divided by (x-2) and a remainder of 4 when divided by (x-3). Find the remainder when P(x) is divided by (x-2)(x-3).
- (b) $P(ct, \frac{c}{t})$ and $Q(1+\cos\theta, \sin\theta)$ are points on the hyperbola $xy=c^2$, where c>0, and the circle $(x-1)^2+y^2=1$ respectively.
 - (i) Show by differentiation that the tangent to the hyperbola at P has equation $x + t^2y = 2ct$ and the tangent to the circle at Q has equation $x\cos\theta + y\sin\theta = 1 + \cos\theta$.
 - (ii) Deduce that PQ is tangent to both the hyperbola and the circle, with points of contact P and Q, if $t^2 = \tan \theta$ and $2ct 1 = \sec \theta$, where $\left(\frac{t}{c}\right)^3 4\left(\frac{t}{c}\right) + \frac{4}{c^2} = 0$.
 - (iii) By considering the graphs of $y = x^3 4x$ and $y = x^3 4x + \frac{4}{c^2}$, deduce that for every value of c > 0 there is exactly one point on the third-quadrant branch of the hyperbola where the tangent to the hyperbola is also tangent to the circle. Show that for $c^2 > \frac{3\sqrt{3}}{4}$, there are also two such points on the first-quadrant branch of the hyperbola.
 - (iv) When $c^2 = \frac{3\sqrt{3}}{4}$, the hyperbola touches the circle at $P(ct, \frac{c}{t})$ where $\frac{t}{c}$ is a double root of the cubic equation $x^3 4x + \frac{4}{c^2} = 0$. Sketch the hyperbola and the circle for $c^2 = \frac{3\sqrt{3}}{4}$, showing any common tangents to the curves with their equations. Write numerical values for the coordinates of any points of contact P, Q for these tangents.

Student name / number

Marks

2

3

2

Question 5

Begin a new booklet

- (a) $z = \cos \theta + i \sin \theta$
- (i) Show that $z^n + z^{-n} = 2\cos n\theta$ for n = 1, 2, 3, ...
- (1) Show that $z + z = 2\cos n\theta + 101 + n 1, z, z, ...$
- (ii) Hence show that $4\cos\theta\cos 2\theta\cos 3\theta = 1 + \cos 2\theta + \cos 4\theta + \cos 6\theta$.
- (iii) Hence solve $\cos^2 \theta + \cos^2 2\theta + \cos^2 3\theta = 1$, giving general solutions.
- (b) A particle is projected vertically downwards under gravity in a medium where resistance is proportional to the speed of the particle. The terminal velocity of the particle is U ms⁻¹, and the speed of projection is equal to half this terminal velocity. At time t seconds, the particle has travelled a distance x metres, has velocity ν ms⁻¹ and has acceleration x ms⁻².
- (i) Show $\ddot{x} = \frac{g}{U}(U v)$, where $g \text{ ms}^{-2}$ is the acceleration due to gravity.
- (ii) Show by integration that $-\frac{g}{U}t = \ln 2\left(1 \frac{v}{U}\right)$. Hence obtain an expression for $\frac{v}{U}$ in terms of t.
- (iii) Show that $x = Ut \frac{U^2}{g} \left(\frac{v}{U} \frac{1}{2} \right)$.
- (iv) If g = 10 and U = 100, find the percentage of the terminal velocity gained during the first second of the motion, and the distance travelled during this time.

6

Question 6 Begin a new booklet

segm when bosiner

The roots of the equation $x^3 + 3x^2 + 7x + k = 0$ are in arithmetic progression. Find the value of the constant k.

(b) The horizontal base of a solid is the area enclosed by the curve $|x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} = 1$. Vertical cross sections taken perpendicular to the x-axis are squares with one side in the base.

(i) Show that the volume of the solid is given by $V = 8 \int_0^1 \left(1 - \sqrt{x}\right)^4 dx$.

(ii) Use the substitution $u = 1 - \sqrt{x}$ to evaluate this integral.

(c) y = 1 $y^2 - x^2 = 1$

A bowl is formed by rotating the hyperbola $y^2 - x^2 = 1$ for $1 \le y \le 5$ through 180° about the y-axis. Sometime later, a particle P of mass m moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω .

(i) Show that if the radius of the circle in which P moves is r, then the normal to the surface at P makes an angle θ with the horizontal where $\tan \theta = \frac{\sqrt{1+r^2}}{r}$.

(ii) Draw a diagram showing the forces on P.

(iii) Find expressions for the radius r of the circle of motion and the magnitude of the reaction force between the surface and the particle in terms of m, g and ω .

7

(iv) Find the values of ω for which the described motion of P is possible.

2

3

2

Marks

Marks

3

Marks

2

Question 7

Begin a new booklet

w booklet

(a) $I_n = \int_1^e (1 - \ln x)^n dx$, n = 0, 1, 2, ...

(i) Show $I_n = -1 + nI_{n-1}$, n = 1, 2, 3, ...

(ii) Hence evaluate $\int_{1}^{e} (1 - \ln x)^{3} dx$.

(iii) Show that $\frac{I_n}{n!} = e - \sum_{r=0}^n \frac{1}{r!}$, n = 1, 2, 3, ...

(iv) Show that $0 \le I_{\parallel} \le e - 1$.

(v) Deduce that $\lim_{n\to\infty} \sum_{r=o}^{n} \frac{1}{r!} = e$.

(b)

ABCD is a cyclic quadrilateral. The diagonals AC and BD intersect at right angles at E. M is the midpoint of CD. ME produced meets AB at N.

(i) Copy the diagram showing the given information. Show that ME = MC.

(ii) Hence show that MN is perpendicular to AB.

Question 8

Begin a new booklet

(a)

In $\triangle ABC$, D is the point on AB that divides AB internally in the ratio m:n. $\angle ACD = \alpha$, $\angle BCD = \beta$ and $\angle CDB = \theta$.

- (i) By using the sine rule in each of $\triangle CAD$ and $\triangle CDB$, show that $\frac{\sin(\theta + \beta)\sin\alpha}{\sin(\theta \alpha)\sin\beta} = \frac{m}{n}.$
- (ii) Hence show that $\tan \theta = \frac{(m+n)\tan \alpha \tan \beta}{m\tan \beta n\tan \alpha}$.
- (b) f(x) and g(x) are continuous and bounded functions.
- (i) By considering $\int_0^a \left\{ \lambda f(x) + g(x) \right\}^2 dx$, a > 0, as a quadratic function of λ , show that $\left\{ \int_0^a f(x)g(x) dx \right\}^2 \le \int_0^a \left\{ f(x) \right\}^2 dx \cdot \int_0^a \left\{ g(x) \right\}^2 dx .$
- (ii) Hence show that $\left\{ \int_0^1 f(x) dx \right\}^2 \le \int_0^1 \left\{ f(x) \right\}^2 dx$.
- (iii) Deduce that $\left\{ \int_{0}^{1} f(x) \, dx \right\}^{4} \le \int_{0}^{1} \left\{ f(x) \right\}^{4} \, dx$.

Independent Trial HSC 2009 Mathematics Extension 2 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• rearranges integrand into appropriate sum of terms	1
• finds primitive	1

Answer

$$\int \frac{(x+1)^2}{x} dx = \int \left(x+2+\frac{1}{x}\right) dx = \frac{1}{2}x^2 + 2x + \ln x + c$$

b. Outcomes assessed: H8, PE3, E8

Marking Cuidalines

Marking Guidennes	
Criteria	 Marks
i • writes and solves a pair of simultaneous equations for A and C	 1
• writes and solves a pair of simultaneous equations for B and D	1
ii • finds and evaluates definite integral for one term	1
finds and evaluates definite integral for second term	1

Answer

$$\frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 4}$$
$$x^3 + 2x^2 + 4x + 2 = (Ax + B)(x^2 + 4) + (Cx + D)(x^2 + 1)$$

equating coefficients of x^3 : 1 = A + C (1)

 $(2)-(1) \Rightarrow 3=3A$ A = 1, C = 0

equating coefficients of x^2 : 2 = B + D

equating coefficients of x: 4 = 4A + C (2)

 $(4)-(3) \Rightarrow 3B=0$

putting x = 0:

2 = 4B + D (4)

 $\therefore B = 0, D = 2$

ii.
$$\int_0^2 \frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} dx = \int_0^2 \left(\frac{x}{(x^2 + 1)} + \frac{2}{(x^2 + 4)} \right) dx$$
$$= \left[\frac{1}{2} \ln(x^2 + 1) + \tan^{-1} \frac{x}{2} \right]_0^2$$
$$= \frac{1}{2} \ln 5 + \tan^{-1} 1$$
$$= \frac{1}{2} \ln 5 + \frac{\pi}{4}$$

c. Outcomes assessed: H5, HE6

Marking Cuidelines

Marking Guidennes	··
<u>Criteria</u>	Marks
• expresses dx in terms of dt and substitutes expressions for $\cos x$ and $\sin x$ in terms of t	1
• simplifies integrand as a function of t and finds primitive in terms of t	1
	1
 writes primitive as a function of x 	

Answer

$$t = \tan \frac{x}{2}$$

$$dt = \frac{1}{2}\sec^{2}\frac{x}{2}dx$$

$$dx = \frac{2}{1+t^{2}}dt$$

$$= \frac{t^{2}+6t+9}{1+t^{2}}$$

$$= \frac{(t+3)^{2}}{1+t^{2}}$$

$$= \frac{2}{t+3} + c$$

$$= \frac{2}{t+3} + c$$

$$= \frac{2}{t+3} + c$$

d. Outcomes assessed: H8, HE6

Marking Guidelines

Criteria	Marks
• expresses du in terms of dx and converts x limits to u limits	1
• simplifies integrand as a function of <i>u</i>	1
• uses table of integrals to write primitive then evaluates by substitution	1

Answer

$$u = \sin x$$
 $x = 0 \Rightarrow u = 0$
 $du = \cos x \, dx$ $x = \frac{\pi}{2} \Rightarrow u = 1$

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1+\sin^{2} x}} dx = \int_{0}^{1} \frac{1}{\sqrt{1+u^{2}}} du$$
$$= \left[\ln \left(u + \sqrt{u^{2} + 1} \right) \right]_{0}^{1}$$
$$= \ln(1+\sqrt{2})$$

e. Outcomes assessed: H8, HE6

Marking Cuidelines

Marks
1
1
1

Answer

$$u = -x
du = -dx
x = -1 \Rightarrow u = 1$$

$$I = \int_{-1}^{1} \frac{1}{e^{x} + 1} dx$$

$$= \int_{-1}^{1} \frac{1}{e^{x} + 1} dx + \int_{-1}^{1} \frac{e^{x}}{1 + e^{x}} dx$$

$$= \int_{-1}^{1} \frac{1}{e^{-u} + 1} du$$

$$= \int_{-1}^{1} \frac{1 + e^{x}}{1 + e^{x}} dx$$

$$= \int_{-1}^{1} \frac{1}{1 + e^{x}} dx$$

$$= \int_{-1}^{1} 1 dx$$

$$\therefore 2I = 2$$

$$= \int_{-1}^{1} 1 dx$$

$$\therefore 2I = 2$$

$$I = 1$$

Question 2

a. Outcomes assessed: E3

Marking Guidelines

Criteria	 Marks
i • finds modulus	1
ii • simplifies sum	1
iii • realises denominator to simplify quotient	1

Answer

$$z_1 = 3i$$
, $z_2 = 1 +$

i.

ii

$$|z_1 - z_2| = \sqrt{(-1)^2 + 2}$$

= $\sqrt{5}$

$$z_1 + \overline{z}_2 = 3i + 1 - 2i$$
$$= 1 + 2i$$

$$\frac{z_1}{z_2} = \frac{3i(1-i)}{(1+i)(1-i)}$$
$$= \frac{3}{2} + \frac{3}{2}i$$

b. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • writes z in modulus-argument form	1
• writes square of z in modulus-argument form	1
• writes reciprocal of z in modulus-argument form	1
ii • uses a diagram or subtracts arguments to show points collinear	I

Answer

i.
$$z = 1 + i\sqrt{3}$$

$$z = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

$$z^2 = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$\frac{1}{z} = \frac{1}{2}\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$

ii. $\angle AOB = \arg z^2 - \arg \frac{1}{z} = \pi$... A, O, B are collinear

c. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • explains why sides OA, OB are equal	1
• finds size of angle at O and deduces triangle equilateral	1
ii • recognizes \overrightarrow{AB} as rotation of \overrightarrow{OB} and expresses $z_2 - z_1$ as multiple of z_2	1
• expresses $z_2 - z_1$ in modulus-argument form	1

Answer

$$z_1 = 2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$$
, $z_2 = 2(\cos\frac{7\pi}{15} + i\sin\frac{7\pi}{15})$

i.
$$|z_1| = |z_2|$$
 $\therefore OA = OB$

$$\angle AOB = \arg z_1 - \arg z_2 = \frac{\pi}{3}$$

∴ all \angle 's of $\triangle AOB$ are $\frac{\pi}{3}$

(\angle sum is π and \angle 's opp. equal sides are equal)

 $\therefore \triangle AOB$ is equilateral.

 \overrightarrow{AB} represents $z_2 - z_1$. \overrightarrow{AB} is the rotation of \overrightarrow{OB}

as the rotation of clockwise by $\frac{\pi}{3}$.

 $\therefore z_2 - z_1 = z_2 \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3}\right) \\ = 2\left(\cos \frac{2\pi}{15} + i \sin \frac{2\pi}{15}\right)$

d. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • shows a ray from O making angle $\frac{\pi}{3}$ with positive x-axis, excluding O	1
• restricts ray to an interval inside the circle with centre O and radius 2.	1
ii • finds the lower bound for the required argument as a strict inequality	1
• finds the upper bound for the required argument	1

Answer

i. P represents z such that $\arg z = \frac{\pi}{3}$ and $|z| \le 2$. Locus of P is the interval OQ on the graph below, with O excluded.

ii. Point A represents the complex number i.

Using trigonometry, Q has coordinates $\left(2\cos\frac{\pi}{3}, 2\sin\frac{\pi}{3}\right)$, giving $Q\left(1, \sqrt{3}\right)$ as shown.

Gradient of AQ is $\sqrt{3}-1$.

 $\therefore -\frac{\pi}{2} < \operatorname{Arg}(z - 1) \leq \tan^{-1} \left(\sqrt{3} - 1 \right)$

Question 3

a. Outcomes assessed: E6

Marking Guidelines

Criteria	Marks
i • sketches curve with correct shape and intercepts	1
ii • sketches curve with correct shape and intercepts	1
iii • shows correct shape and y-intercept for branch to left of vertical asymptote at $x = 4$	1
shows correct shape and position of branch to right of vertical asymptote	li
iv • shows correct shape, position and behaviour near vertical asymptote at $x = 4$	1
• shows x-intercept	1

Answer

b. Outcomes assessed: E6

Marking Guidelines

THAT KING GUIDENIES	
Criteria	Marks
• uses differentiation to find the gradient of the tangent at P	1
• uses coordinates of O and P to find gradient of OP and hence writes equation for x_1	1
• solves this equation to find coordinates of P	1

Answer

$$y = \sqrt{x - a}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x_1 - a}}$$

$$\therefore \text{ tangent at } P \text{ has gradient } \frac{1}{2\sqrt{x_1 - a}}$$

$$\therefore \text{ tangent at } P \text{ has coordinates } \left(2a, \sqrt{a}\right)$$

c. Outcomes assessed: H8, PE3

Marking Guidelines

Training Guidelines		
Criteria	Marks	
i • writes expression for approximate area using trapezoidal rule	1	
• simplifies this expression	1	
ii • differentiates given expression	1	
• uses fact that integration is the inverse operation to evaluate required definite integral	1	
iii • compares total area enclosed by trapezia with area under curve	1	
 uses this to write and simplify inequality 	1	

Answer

i. ii.
$$\int_{1}^{n} \ln x \, dx$$

$$\approx \frac{1}{2} \left\{ \ln 1 + 2 \left[\ln 2 + \ln 3 + ... + \ln(n-1) \right] + \ln n \right\}$$

$$= \ln 1 + \ln 2 + \ln 3 + ... + \ln n - \frac{1}{2} (\ln 1 + \ln n)$$

$$= \ln n! - \frac{1}{2} \ln n$$

$$\lim_{n \to \infty} \left[x \ln x - x \right]_{1}^{n} = \int_{1}^{n} \ln x \, dx$$

$$\therefore \int_{1}^{n} \ln x \, dx = n \ln n - n + 1$$

iii. The total area of the trapezia fitted under the curve is less than the area under the curve.

Question 4

a. Outcomes assessed: E4

Marking Guidelines

Criteria	Marks
• writes division transformation of $P(x)$ when divided by $(x-2)(x-3)$ with remainder $(ax+b)$	1
• uses remainder theorem to write simultaneous equations for a, b then finds required remainder	1

Answer

Using the division transformation, $P(x) \equiv (x-2)(x-3)Q(x) + ax + b$ for some polynomial Q(x) and real constants a, b, where (ax + b) is the remainder when P(x) is divided by (x-2)(x-3).

Then $P(2) = 9 \Rightarrow 2a + b = 9$ $P(3) = 4 \Rightarrow 3a + b = 4$ $\therefore a = -5$ b = 19 $\therefore remainder is (-5x+19).$

b. Outcomes assessed: E3, E4

Marking Guidelines

Criteria	Marks
i • finds equation of tangent to hyperbola by differentiation	1
• finds gradient of tangent to circle in terms of θ	1
• completes equation of tangent to circle using appropriate trig. identity	1
ii • compares coefficients for two forms of equation of PQ to obtain results for $\tan \theta$, $\sec \theta$	1
• obtains quartic equation for t	l i
 factors then rearranges to get required cubic equation 	1
iii • graphs $y = x^3 - 4x$ showing intercepts and stationary point in 4 th quadrant	1
 compares vertical translations to deduce existence of such a point on 3rd quad. branch 	1
• uses turning point to deduce existence of such points on 1st quad. branch for stated c	1
iv • sketches hyperbola and circle, touching in first quadrant, with two common tangents	1
• gives coordinates of point where curves touch and equation of this common tangent	1
 gives coordinates of point of contact on hyperbola for second common tangent 	1
• gives equation of this tangent and coordinates of its point of contact with circle	1

Answer

i.

$$x = ct y = \frac{c}{t} x = 1 + \cos\theta y = \sin\theta$$

$$\frac{dx}{dt} = c \frac{dy}{dt} = -\frac{c}{t^2} \frac{dx}{d\theta} = -\sin\theta \frac{dy}{d\theta} = \cos\theta$$

$$\therefore \frac{dy}{dx} = -\frac{c}{t^2} + c = -\frac{1}{t^2} \therefore \frac{dy}{dx} = -\frac{\cos\theta}{\sin\theta}$$
Tangent to hyperbola has equation
$$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct) y - \sin\theta = -\frac{\cos\theta}{\sin\theta}(x - 1 - \cos\theta)$$

$$x + t^2y = 2ct x \cos\theta + y\sin\theta = \cos^2\theta + \sin^2\theta + \cos\theta$$

$$x \cos\theta + y\sin\theta = 1 + \cos\theta$$

ii. When these two tangents are in fact the same line, PQ is tangent to both curves. Comparing the equations $x + t^2y = 2ct$ and $x + y \tan \theta = \sec \theta + 1$ (rearrangement of tangent to circle at Q), these equations give the same line when $t^2 = \tan \theta$ and $2ct - 1 = \sec \theta$.

The

$$1 + \tan^{2}\theta = \sec^{2}\theta \implies 1 + t^{4} = (2ct - 1)^{2} \qquad t \neq 0 \implies t^{3} - 4c^{2}t + 4c = 0$$

$$t^{4} - 4c^{2}t^{2} + 4ct = 0 \qquad \therefore \qquad \left(\frac{t}{c}\right)^{3} - 4\left(\frac{t}{c}\right) + \frac{4}{c^{2}} = 0 \quad *$$

$$t \neq 0 \implies t^{3} - 4c^{2}t + 4c = 0$$

$$\therefore \qquad \left(\frac{t}{c}\right)^{3} - 4\left(\frac{t}{c}\right) + \frac{4}{c^{2}} = 0 \quad *$$

· iii.

$$y = x^{3} - 4x$$

$$\frac{dy}{dx} = 3x^{2} - 4$$

$$\frac{dy}{dx} = 0 \Rightarrow x = \pm \frac{2}{\sqrt{3}}$$

$$x = \frac{2}{\sqrt{3}} \Rightarrow y = -\frac{16}{3\sqrt{3}}$$

The graph of $y=x^3-4x+k$, k>0, is an upward vertical translation of $y=x^3-4x$. Hence for all c>0, $y=x^3-4x+\frac{4}{c^2}$ has exactly one negative x-intercept corresponding to one negative t value satisfying *, thus giving exactly one point P on the third-quadrant branch of the hyperbola where the tangent to the hyperbola is also tangent to the circle. For $\frac{4}{c^2}<\frac{16}{3\sqrt{3}}$, $y=x^3-4x+\frac{4}{c^2}$ also has two distinct positive x-intercepts. Hence for $c^2>\frac{3\sqrt{3}}{4}$, there are two distinct positive t values satisfying *, giving two such points P on the first-quadrant branch of the hyperbola.

iv. When $c^2 = \frac{3\sqrt{3}}{4}$, $x^3 - 4x + \frac{4}{c^2} = 0$ becomes $x^3 - 4x + \frac{16}{3\sqrt{3}} = 0$. From the graph, this equation has a double root $\frac{2}{\sqrt{3}}$, and a third root $\frac{-4}{\sqrt{3}}$ (since the sum of the roots is zero).

$$\frac{t}{c} = \frac{2}{\sqrt{3}} \implies \frac{ct = \frac{3}{2}}{\frac{c}{t} = \frac{\sqrt{3}}{2}} \qquad \therefore \text{ curves touch at } \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) \text{ with common tangent } x + \sqrt{3} \ y = 3.$$

$$\frac{t}{c} = \frac{-4}{\sqrt{3}} \implies \frac{ct = -3}{\frac{c}{t} = -\frac{\sqrt{3}}{4}} \qquad \text{and} \qquad \sec \theta = 2ct - 1 = -7 \\ \tan \theta = t^2 = 4\sqrt{3} \qquad \therefore \text{ points of contact of second common}$$

tangent $x + 4\sqrt{3}$ y = -6 are $\left(-3, -\frac{\sqrt{3}}{4}\right)$ on the hyperbola and $\left(\frac{6}{7}, -\frac{4\sqrt{3}}{7}\right)$ on the circle.

Question 5

a. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks	
i • uses de Moivre's theorem to show result	1	
ii • expands $(z^1 + z^{-1})(z^2 + z^{-2})(z^3 + z^{-3})$	1	
• rearranges, regroups and applies result from i. to obtain required trig. identity	1	
iii • uses double angle formula and identity from ii. to simplify equation	1	
• obtains general solution for $\cos \theta = 0$, or obtains all solutions for $-\pi < \theta \le \pi$	1	
obtains remaining general solutions	1	

Answer

i.
$$z = \cos \theta + i \sin \theta$$
. By de Moivre's theorem, $z^n = \cos n\theta + i \sin n\theta$ for $n = 1, 2, 3, ...$
Then $z^{-n} = \cos(-n\theta) + i \sin(-n\theta) \implies z^{-n} = \cos n\theta - i \sin n\theta$
Hence $z^n + z^{-n} = 2\cos n\theta$

ii.
$$(z^{1} + z^{-1})(z^{2} + z^{-2})(z^{3} + z^{-3}) = (z^{3} + z^{-3} + z^{1} + z^{-1})(z^{3} + z^{-3})$$

 $= 2 + z^{2} + z^{-2} + z^{4} + z^{-4} + z^{6} + z^{-6}$
 $\therefore 2\cos\theta \cdot 2\cos 2\theta \cdot 2\cos 3\theta = 2 + 2\cos 2\theta + 2\cos 4\theta + 2\cos 6\theta$
 $4\cos\theta\cos 2\theta\cos 3\theta = 1 + \cos 2\theta + \cos 4\theta + \cos 6\theta$

iii.
$$\cos^2\theta + \cos^2 2\theta + \cos^2 3\theta = 1$$
 $\cos\theta = 0 \Rightarrow \theta = 2m\pi \pm \frac{\pi}{2} = (4m \pm 1)\frac{\pi}{2}$ $\cos\theta = 0 \Rightarrow \theta = 2m\pi \pm \frac{\pi}{2} = (4m \pm 1)\frac{\pi}{2}$ $\therefore \theta = (4m \pm 1)\frac{\pi}{2}, (4m \pm 1)\frac{\pi}{6}$ for $m = 0, \pm 1, \pm 2, ...$ $1 + \cos 2\theta + \cos 4\theta + \cos 6\theta = 0$ $4 \cos \theta \cos 2\theta \cos 3\theta = 0$

b. Outcomes assessed: E5

Marking Guidelines

Criteria	Marks
i • uses Newton's 2 nd law to derive equation of motion	1
• uses $\ddot{x} \to 0$ as $v \to U$ to express equation of motion in required form	1
ii • finds primitive function for t	1
• evaluates constant of integration to establish required expression for t in terms of v	i
• rearranges to find expression for ν in terms of t	1
iii • integrates to find x in terms of t	1
 substitutes and rearranges to obtain required expression for x 	1
iv • calculates percentage of terminal velocity gained in first second	1
 calculates distance travelled in first second. 	1

Answer

mkv i. By Newton's 2^{nd} Law, $\ddot{x} \to 0$ as $v \to \frac{g}{k} \implies U = \frac{g}{k} : k = \frac{g}{U}$ $mg \qquad \ddot{x} = g - kv \qquad \therefore \ddot{x} = \frac{g}{U}(U - v)$

· ii.

$$\frac{dv}{dt} = \frac{g}{U}(U - v)$$

$$-\frac{g}{U}\frac{dt}{dv} = -\frac{1}{U - v}$$

$$-\frac{g}{U}t = \ln A(U - v), A const.$$

$$t = 0$$

$$v = \frac{1}{2}U$$

$$\therefore -\frac{g}{U}t = \ln 2\left(1 - \frac{v}{U}\right)$$

$$e^{-\frac{g}{U}t} = 2\left(1 - \frac{v}{U}\right)$$

$$\therefore \frac{v}{U} = 1 - \frac{1}{2}e^{-\frac{g}{U}t}$$

iii.

$$v = U - \frac{1}{2}U e^{-\frac{g}{U}t}$$

$$x = Ut + \frac{U^2}{2g} e^{-\frac{g}{U}t} + c, \quad c \text{ const}$$

$$t = 0$$

$$x = 0$$

$$\Rightarrow 0 = 0 + \frac{U^2}{2g} + c \quad \therefore c = -\frac{U^2}{2g}$$

$$x = Ut + \frac{U^2}{g} \left(\frac{1}{2}e^{-\frac{g}{U}t} - \frac{1}{2}\right)$$

$$\therefore x = Ut - \frac{U^2}{g} \left(\frac{v}{U} - \frac{1}{2}\right)$$

iv.
$$t = 1 \Rightarrow \frac{v}{U} - \frac{1}{2} = \frac{1}{2} (1 - e^{-0.1}) \approx 0.04758$$

$$x = 100 - 1000 \times (\frac{v}{U} - \frac{1}{2}) \approx 52.4187$$

... particle has gained 4.8% of its terminal velocity and travelled 52.4 metres during the first second.

Ouestion 6

a. Outcomes assessed: E4

Marking Guidelines		
Criteria	Marks	
• uses relationship between coefficients and sum of roots to find one root	1	
• substitutes this root into the equation to find the value of k	1	

Answer

Let $x^3 + 3x^2 + 7x + k = 0$ have roots $\alpha - d$, α , $\alpha + d$. Then considering the sum of the roots $3\alpha = -3$ $\therefore \alpha = -1$ Then $(-1)^3 + 3(-1)^2 + 7(-1) + k = 0 \implies k = 5$

b. Outcomes assessed: E7

Marking Cnidelines

Criteria	Marks
i • finds area of square cross section in terms of x	1
expresses volume as limiting sum of slices and hence as integral	1
ii • expresses dx in terms of du	1
 converts x limits to u limits and simplifies new integrand after substitution 	1
evaluates resulting definite integral	1

Answer

i. Area of square cross section is $A = (2y)^2 = 4\left(1 - |x|^{\frac{1}{2}}\right)^4$, since $y = \left(1 - |x|^{\frac{1}{2}}\right)^2$, $-1 \le x \le 1$. Hence $V = \lim_{\delta x \to 0} \sum_{1}^{1} 4 \left(1 - \left| x \right|^{\frac{1}{2}} \right)^{4} \delta x = 8 \lim_{\delta x \to 0} \sum_{1}^{1} \left(1 - x^{\frac{1}{2}} \right)^{4} \delta x = 8 \int_{0}^{1} \left(1 - \sqrt{x} \right)^{4} dx$ (using symmetry) ii.

$$u = 1 - \sqrt{x} \qquad x = 0 \Rightarrow u = 1 x = (1 - u)^{2} \qquad x = 1 \Rightarrow u = 0$$

$$dx = -2(1 - u)du \qquad = 16 \int_{0}^{1} (u^{4} - u^{5}) du$$

$$= 16 \left[\frac{1}{5} u^{5} - \frac{1}{6} u^{6} \right]_{0}^{1}$$

$$= \frac{8}{15}$$

c. Outcomes assessed: E5

Marking Guidelines

Criteria	Marks
i • finds gradient of tangent by differentiation	1
• finds gradient of normal at P and hence deduces required expression for $\tan \theta$	1
ii • draws diagram showing forces on P	1
iii • resolves vertically and horizontally to find simultaneous equations	
• finds r in terms of g and ω	1 1·
• finds N in terms of m, g and ω	1
iv • considers expressions for r , N and the height of the bowl to find limits for ω	i

Answer

i.
$$y^2 - x^2 = 1$$
, $P(r, \sqrt{1 + r^2})$
 $2y\frac{dy}{dx} - 2x = 0$
 $\frac{dy}{dx} = \frac{x}{y}$

.. normal at P has gradient $\therefore \tan \theta = \frac{\sqrt{1+r^2}}{}$

iii. Resolving vertically and horizontally, by Newton's 2nd law

$$N\sin\theta = mg \qquad (1)$$
$$N\cos\theta = mr\omega^2 \qquad (2)$$

$$\frac{(1)}{(2)} \Rightarrow \tan \theta = \frac{g}{r\omega^2}$$

$$\frac{\sqrt{1+r^2}}{r} = \frac{g}{r\omega^2}$$

$$\therefore r = \sqrt{\frac{g^2}{\omega^4} - 1}$$

$$r = \frac{\sqrt{g^2 - \omega^4}}{\omega^2}$$
Then from (2)
$$N^2 = m^2 r^2 \omega^4 \sec^2 \theta$$

$$= m^2 r^2 \omega^4 (1 + \tan^2 \theta)$$

$$= m^2 \omega^4 (r^2 + r^2 \tan^2 \theta)$$

$$= m^2 \omega^4 \left(\frac{g^2}{\omega^4} - 1 + \frac{g^2}{\omega^4}\right)$$

$$= m^2 (2g^2 - \omega^4)$$

$$\therefore N = m\sqrt{2g^2 - \omega^4}$$

iv. Considering expressions for r and N, $\omega^4 \leq g^2$ $\therefore \omega \leq \sqrt{g}$

Also
$$y \le 5 \Rightarrow \sqrt{1 + r^2} \le 5 \Rightarrow \frac{g}{\omega^2} \le 5$$
 $\therefore \sqrt{\frac{g}{5}} \le \omega \le \sqrt{g}$

Question 7

a. Outcomes assessed: E8, E9

M	[arking	Guid	eline

Criteria	Marks
i • executes integration by parts	1
• evaluates numerical term and simplifies new definite integral to obtain reduction formula	1
ii • finds value of I_0	1
 uses reduction formula to evaluate required integral 	1
iii • obtains reduction formula for $\frac{1}{r!}I_r$, $r=1,2,,n$	1
 obtains required result by summation and simplification 	1
iv • shows integrand lies between 0 and 1 for $1 \le x \le e$ and deduces required inequality	1
v • shows 0 is limiting value of $\frac{1}{n!}I_n$ as $n\to\infty$ then deduces required result	1

Answer

i.
$$I_n = \int_1^e (1 - \ln x)^n dx$$
, $n = 0, 1, 2, ...$
For $n \ge 1$,
$$I_n = \left[x \left(1 - \ln x \right)^n \right]_1^e - \int_1^e x \cdot n \left(1 - \ln x \right)^{n-1} \left(-\frac{1}{x} \right) dx$$

$$= -1 + n \int_1^e (1 - \ln x)^{n-1} dx$$

$$\therefore I_n = -1 + n I_{n-1}, \quad n = 1, 2, 3, ...$$

ii.
$$I_0 = \int_1^e 1 dx = e - 1$$

 $I_3 = -1 + 3I_2$
 $= -1 + 3(-1 + 2I_1)$
 $= -4 + 6(-1 + 1I_0)$
 $= -10 + 6(e - 1)$
 $= -16 + 6e$

iii.
$$\frac{I_r}{r!} = \frac{-1}{r!} + \frac{rI_{r-1}}{r!}, \quad r = 1, 2, ..., n$$

$$\frac{I_r}{r!} = \frac{-1}{r!} + \frac{I_{r-1}}{(r-1)!}$$

$$\sum_{r=1}^n \frac{I_r}{r!} = -\sum_{r=1}^n \frac{1}{r!} + \sum_{r=1}^n \frac{I_{r-1}}{(r-1)!}$$

$$\sum_{r=1}^n \frac{I_r}{r!} = -\sum_{r=1}^n \frac{1}{r!} + \sum_{r=0}^{n-1} \frac{I_r}{r!}$$

$$\therefore \frac{I_n}{n!} = -\sum_{r=1}^n \frac{1}{r!} + \frac{I_0}{0!}$$

$$= -\sum_{r=1}^n \frac{1}{r!} + \frac{-1}{0!} + \frac{e}{0!}$$

$$= e - \sum_{r=0}^n \frac{1}{r!}$$

iv.
$$1 \le x \le e \implies 0 \le \ln x \le 1 \implies 0 \le (1 - \ln x)^n \le 1$$

$$\therefore 0 \le \int_1^e (1 - \ln x)^n dx \le \int_1^e 1 dx$$

$$0 \le I_n \le e - 1$$
v. $0 \le \frac{I_n}{n!} \le \frac{e - 1}{n!}$
But $\lim_{n \to \infty} \frac{e - 1}{n!} = 0$ $\therefore \lim_{n \to \infty} \frac{I_n}{n!} = 0$
Then $\lim_{n \to \infty} \left(e - \sum_{r=0}^n \frac{1}{r!} \right) = \lim_{n \to \infty} \frac{I_n}{n!} = 0$

$$\therefore e - \lim_{n \to \infty} \sum_{r=0}^n \frac{1}{r!} = 0$$

$$\therefore \lim_{n \to \infty} \sum_{r=0}^n \frac{1}{r!} = e$$

b. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • copies diagram, shows given information, realises a circle can be drawn through C, D, E	1
• explains why CD is a diameter of circle CDE.	1
• deduces that M is the centre of circle CDE and hence ME, MC are radii.	1
ii • uses i. to deduce $\angle ECM = \angle CEM$	1
• uses equality of vertically opposite angles to deduce $\angle NEA = \angle ECD$	1
• uses equality of angles subtended by same arc at circumference to deduce $\angle NAE = \angle EDC$	1
 uses angle sum property of a triangle to complete proof 	1

Answer

A unique circle can be drawn through any set of 3 non-collinear points.

Consider the circle that passes through C, D and E. Since $\angle CED = 90^{\circ}$, CD is a diameter of this circle. Also, given M is the midpoint of DC. M is the centre of circle CDE.

 $\therefore ME = MC$ (radii of a circle are equal)

ii. $\angle ECM = \angle CEM$

 $(\angle's \ opp. \ equal \ sides \ are \ equal \ in \ \Delta MEC)$

 $\angle NEA = \angle CEM$

(vert. opp. \angle 's are equal)

 $\therefore \angle NEA = \angle ECM = \angle ECD$ (D, M, C collinear)

Also $\angle BAC = \angle BDC$

(\angle 's subtended at the circumference by the same arc BC are equal)

 $\therefore \angle NAE = \angle EDC$

(∠NAE, ∠BAC same angle; ∠EDC, ∠BDC same angle)

 $\therefore \angle ANE = \angle DEC = 90^{\circ}$

(third \angle 's of Δ 's NAE, EDC also equal since \angle sum of each is 180°)

 $\therefore MN \perp AB$

Question 8

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
i • uses sine rule in $\triangle CAD$ to relate sides CD , AD and opposite angles	1
• uses sine rule in $\triangle CDB$ to relate sides CD, DB and opposite angles	1
• combines resulting equalities to obtain ratio AD: DB in terms of sine ratios of angles	1
• uses internal division information and trig. identity for sine to deduce required result	1
ii • expands sine of a sum and of a difference	1
• divides by product of cosine ratios to rearrange result in terms of tangent ratios	1
• rearranges to get required result	1

* Answer

In $\triangle CAD$, by ext. \angle theorem, $\angle CAD = \theta - \alpha$

$$\frac{CD}{\sin(\theta - \alpha)} = \frac{AD}{\sin \alpha} \quad (1)$$

In
$$\triangle CDB$$
, by \angle sum 180°, $\angle CBD = 180^{\circ} - (\theta + \beta)$

$$\therefore \frac{CD}{\sin(\theta - \alpha)} = \frac{AD}{\sin \alpha} \quad (1) \qquad \qquad \therefore \frac{CD}{\sin\{180^{\circ} - (\theta + \beta)\}} = \frac{DB}{\sin \beta} \quad (2)$$

$$\frac{(1)}{(2)} \Rightarrow \frac{\sin(\theta + \beta)}{\sin(\theta - \alpha)} = \frac{AD\sin\beta}{DB\sin\alpha}$$

$$\therefore \frac{\sin(\theta + \beta)\sin\alpha}{\sin(\theta - \alpha)\sin\beta} = \frac{AD}{DB} = \frac{m}{n}$$

ii. $n\sin\alpha(\sin\theta\cos\beta + \cos\theta\sin\beta) = m\sin\beta(\sin\theta\cos\alpha - \cos\theta\sin\alpha)$ Dividing both sides by $\cos \alpha \cos \beta \cos \theta$ gives

 $n \tan \alpha (\tan \theta + \tan \beta) = m \tan \beta (\tan \theta - \tan \alpha)$

 $(n+m)\tan\alpha\tan\beta = \tan\theta(m\tan\beta - n\tan\alpha)$

$$\tan \theta = \frac{(n+m)\tan \alpha \tan \beta}{(m\tan \beta - n\tan \alpha)}$$

b. Outcomes assessed: H5, PE3, E9

Marking Guidelines

Criteria Criteria	Marks
i • realises that the definite integral cannot be negative for any real λ	1
\bullet expands the integrand to write a quadratic expression in λ	1
• finds the discriminant of this quadratic expression	
• uses $\Delta \leq 0$ to deduce the required result	1
ii • substitutes $a = 1$ and $g(x) = 1$	1
• evaluates integral involving $\{g(x)\}^2$ to obtain required result	1
iii • squares both sides of result from ii.	1
• applies result from ii. a second time with $f(x)$ replaced by $\{f(x)\}^2$	1

Answer

i. Since a > 0, $\int_{a}^{a} {\lambda f(x) + g(x)}^{2} dx \ge 0$ for all real λ .

$$\int_0^a \left\{ \lambda f(x) + g(x) \right\}^2 dx = \lambda^2 \int_0^a \left\{ f(x) \right\}^2 dx + 2\lambda \int_0^a f(x)g(x) dx + \int_0^a \left\{ g(x) \right\}^2 dx$$

Considered as a quadratic in λ , this expression has discriminant $\Delta \leq 0$.

$$\therefore 4 \left\{ \int_0^a f(x)g(x) \, dx \right\}^2 - 4 \int_0^a \left\{ f(x) \right\}^2 \, dx \cdot \int_0^a \left\{ g(x) \right\}^2 \, dx \le 0$$

$$\therefore \left\{ \int_0^a f(x)g(x) \, dx \right\}^2 \le \int_0^a \left\{ f(x) \right\}^2 \, dx \cdot \int_0^a \left\{ g(x) \right\}^2 dx$$

ii. Let
$$a = 1$$
 and $g(x) = 1$. Then $\int_0^1 1^2 dx = 1 \implies \left\{ \int_0^1 f(x) dx \right\}^2 \le \int_0^1 \left\{ f(x) \right\}^2 dx$

iii.
$$\left\{ \int_0^1 f(x) \, dx \right\}^4 \le \left\{ \int_0^1 \left\{ f(x) \right\}^2 \, dx \right\}^2 \le \int_0^1 \left\{ \left\{ f(x) \right\}^2 \right\}^2 \, dx$$
 $\therefore \left\{ \int_0^1 f(x) \, dx \right\}^4 \le \int_0^1 \left\{ f(x) \right\}^4 \, dx$