NSW INDEPENDENT SCHOOLS

2016 **Higher School Certificate**

Trial Examination

Mathematics

General Instructions

Reading time - 5 minutes

Working time - 3 hours

Board approved calculators may be

Write using black or blue pen

- A table of standard integrals is provided at the back of the paper
- · All necessary working should be shown in Question 11-16
- Write your student number and/or name at the top of every page

Total marks - 100

Section I - Pages 2-4

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 5-10

90 marks

Attempt Questions 11 – 16

Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

		Student name / number	
_	-		Marks
S	ection	1 .	
A		ks t Questions 1-10. bout 15 minutes for this section.	. '
U	se the	multiple-choice answer sheet for questions 1-10.	
1	What	is the value of $9.8 \times 10^7 - 2.3 \times 10^4$?	1
	(A)	7.5×10^{3}	
	(B)	7.5×10^4	
	(C)	9·7977×10 ⁶	
	(D)	9.7977×10^{7}	
2	What	is the value of $\sum_{k=1}^{4} (-1)^k k^2$?	1
	(A)	~30	
	(B)	-10	
	(C)	10	
	(D)	30	
3	Whic	sh of the following quadratic expressions is positive definite?	1
	(A)	$x^2 + 5x + 2$	
	(B)	$x^2 + 5x + 4$	
	(C)	$x^2 + 5x + 6$	
	(D)	$x^2 + 5x + 8$	•
4	Whic	th of the following trigonometric expressions is equivalent to $\tan(\frac{\pi}{2}-x)$?	. 1
	(A)	tanx	
	(B)	cotx	
	(C)	-tanx	
	(D)	-cotx	
5	What	is the range of the function $f(x) = \sqrt{1-x^2}$?	1
	(A)	0 < y < 1	
	(B)	$0 \le y \le 1$	
	(C)	-1< <i>y</i> <1	
	(D)	$-1 \le y \le 1$	

		•		Ma	arks
6		denotes the score when a fair die is rolled once, what is the probability that 1) is a perfect square?			.1
	(A)	1 6			
	(B)	1 3			
	(C)	$\frac{1}{2}$			
	(D)	2 3			
7	What	is the value of $\int_{-2}^{2} x dx$?			1
	(A)	0			
	(B)	2			
	(C)	4			
	(D)	8			
8	What	are the amplitude and period of the function $f(x) = 2 - \sin 2x$?			1
	(A)	Amplitude 1, period π			
	(B)	Amplitude 1, period 2π			
	(C)	Amplitude 2, period π	٠		
	(D)	Amplitude 2, period 2π			
9	Which	of the following is an expression for $\frac{d}{dx}(e^{2x}\tan x)$?			1
	(A)	$2e^{2x}\tan x$			
	(B)	$e^{2x} \sec^2 x$			
	(C)	$2(1+\tan^2 x)e^{2x}$			
	,	$\left(1+\tan x\right)^2e^{2x}$			
10	What	is the number of real roots of the equation $x(x-2)\log_e x=0$?			1
	(A)	0			
	(B)	1			
	(C)	2			
	(D)	3			

Student name / number _

	N .	Tarks
ectio		
Пом	pt Questions 11-16 about 2 hours and 45 minutes for this section.	
n Que	er the questions in writing booklets provided. Use a separate writing booklet for each questions 11-16 your responses should include relevant mathematical reasoning and/or ations.	estion.
)uesti	ion 11 (15 marks) Use a separate writing booklet.	
a)	Find in simplest exact form the value of $(3-2\sqrt{2})^2$.	2
b)	Solve the quadratic equation $2x^2 - 5x - 3 = 0$.	2
	Differentiate with respect to x $\sin(1-x)$ $x\log_e x$	1
d)	Find the equation of the tangent to the curve $y = \frac{x}{x-1}$ at the point (2,2) on the curve.	. 3
e)	Evaluate in simplest exact form $\int_1^2 \frac{x+1}{x} dx$.	3
T)	The region bounded by the curve $y = \frac{1}{2x+1}$ and the x axis between $x=0$ and $x=1$ is rotated about the x axis to form a solid. Find the volume of the solid of revolution in simplest exact form.	3

Student name / number

Marks

Question 12 (15 marks)

Use a separate writing booklet.

Find $\int \sec x(\cos x + \sec x) dx$.

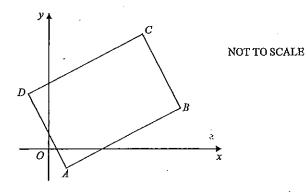
2

- Find the coordinates of the point of inflexion on the curve $y = x^3 3x^2 + 6x$.

- A parabola has equation $8y = x^2 6x + 1$.
- (i) Write the equation in the form $(x-h)^2 = 4a(y-k)$.

(ii) Find the vertex and focal length of the parabola.

- (iii) Find the coordinates of the focus and the equation of the directrix of the parabola.
- In the diagram below, ABCD is a parallelogram. Side AB has equation x-2y-3=0, side BC has equation 2x+y-16=0 and vertex D has coordinates (-1,3).



- (i) Show that ABCD is a rectangle.
- (ii) Find the coordinates of the vertex C.

Student name / number

Question 13 (15 marks)

Use a separate writing booklet.

The gradient function of a curve y = f(x) is given by $f'(x) = \frac{x}{2} + \frac{4}{\sqrt{x}}$.

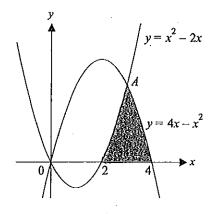
Marks

2

2

The curve passes through the point (4,5). Find the equation of the curve.

The diagram below shows the parabolas $y=4x-x^2$ and $y=x^2-2x$. The graphs intersect at the origin O and the point A.



- (i) Find the x coordinate of the point A.
- (ii) Find the area of the shaded region bounded by the two parabolas and the x axis.
- Blaise rolls a fair die twice.
 - (i) Find as a fraction the probability that the scores include a 3 or a 5 but not both.
 - (ii) Find as a fraction the probability that both scores are odd given that the highest score showing is a 5.
- Use Simpson's Rule with 5 function values to approximate $\int_{1}^{9} (\log_{e} x)^{2} dx$, giving your answer correct to 2 significant figures.

Student name /	number	
		 _

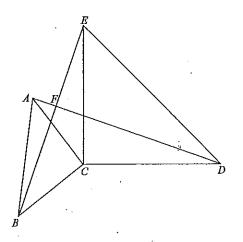
Marks

2

Question 14 (15 marks)

Use a separate writing booklet.

- Find the values of x for which the function $y=x-x^2$ is decreasing.
- The 8th term of an Arithmetic Progression is 23 and the 11th term is four times the 3rd term. Find the first term and the common difference.
- After time t years the value \$V\$ of a car is given by $V = 24\,000\,e^{-0.1t}$.
- (i) Find the decrease in the value of the car during the fourth year.
- (ii) Find the percentage decrease in the value of the car during the fourth year.
- In $\triangle ABC$, AC = BC and $\angle BCA = 90^{\circ}$. In $\triangle CDE$, DC = EC and $\angle ECD = 90^{\circ}$. DA and BE intersect at F.



- (i) Copy the diagram. Prove that $\triangle BCE = \triangle ACD$.
- (ii) Show that DALBE.

Student name / number

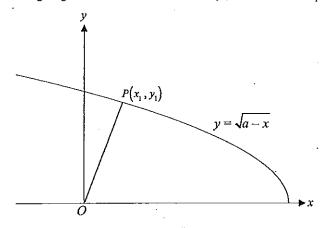
Use a separate writing booklet.

Find in simplest exact form the value of $\int_{-\infty}^{\infty} e^{2x} dx$.

Question 15 (15 marks)

Solve the equation $2\log_2 x - \log_2(x+4) = 1$.

The diagram shows the graph of the curve $y = \sqrt{a-x}$ where a > 0. The normal to the curve at the point $P(x_1, y_1)$ passes through the origin O(0,0). By considering the gradient of OP in two different ways, find the value of x_i .



(d)(i) Solve the equation $\sin x = \cos x$ for $0 \le x \le 2\pi$.

(ii) On the same diagram, sketch the graphs of the curves $y = \cos x$ and $y = \sin x$ for $0 \le x \le 2\pi$, showing clearly the intercepts on the coordinate axes.

(iii) Find in simplest exact form the area of the region enclosed by the curves $y = \sin x$ and $v = \cos x$ for $0 \le x \le 2\pi$.

3

Marks

Student name /	number		

Marks

Question 16 (15 marks)

Use a separate writing booklet.

- (a) Given that the limiting sums S_1 and S_2 of the series both exist, where $S_1 = 1 + \sin^2 x + \sin^4 x + \sin^6 x + \dots$ $S_2 = 1 + \cos^2 x + \cos^4 x + \cos^6 x + \dots$
- (i) Show that $S_1 = \sec^2 x$ and $S_2 = \csc^2 x$.
- (ii) Show that $S_1 + S_2 = S_1 S_2$.
- (b) A particle is moving in a straight line. After time t seconds its displacement x metres from a fixed point O on the line is given by $x=t-3\log_2(t+1)$. The particle returns to its starting point after T seconds.
 - (i) Find when the particle is at rest.

1

2

- (ii) Find in simplest exact form the distance travelled by the particle in the first T seconds of its motion.
- (iii) Show that $e^T = (T+1)^3$.
- A cylindrical container closed at both ends is to be made from thin sheet metal. The container is to have a radius of r cm and a height of h cm such that its
 - volume is 2000π cm³. (Such a cylinder closed at both ends has surface area S and volume V given by the formulae $S = 2\pi r^2 + 2\pi rh$ and $V = \pi r^2 h$.)
- (i) Show that the area of sheet metal required to make the container is $\left(2\pi r^2 + \frac{4000\pi}{r}\right)$ cm². 2
- (ii) Hence find the minimum area of sheet metal required to make the container.

Independent Trial HSC 2016

Mathematics

Marking Guidelines

Section 1 Questions 1-10 (1 mark each)

Question	Answer	Solution	Outcomes
1	D	$9.8 \times 10^7 - 2.3 \times 10^4 = (9.8 - 0.0023) \times 10^7 = 9.7977 \times 10^7$	P3
2	С	$\sum_{k=1}^{4} (-1)^k k^2 = -1 + 4 - 9 + 16 = 10$	Н5
3	D	For $x^2 + 5x + 8$, $\Delta = 25 - 32 < 0$. For other expressions, $\Delta > 0$	P4
4	В	$\tan\left(\frac{\pi}{2} - x\right) = \cot x$	H5
5	В	$0 \le \sqrt{1 - x^2} \le 1 \therefore 0 \le f(x) \le 1$	P5
6	С	$k=1,2,,6 \Rightarrow 8k+1=2,17,\underline{25},33,41,\underline{49} \qquad \therefore P(square)=\frac{3}{6}=\frac{1}{2}$	Н5
7	С	$\int_{-2}^{2} x dx = 2 \int_{0}^{2} x dx = \left[x^{2}\right]_{0}^{2} = 4$	H8
8	A	$-1 \le \sin 2x \le 1$ $\therefore 1 \le 2 - \sin 2x \le 3$ \therefore Amplitude is 1. Period is $\frac{2\pi}{2} = \pi$	H5
9	D	$\frac{d}{dx}(e^{2x}\tan x) = 2e^{2x}\tan x + e^{2x}\sec^2 x = e^{2x}(2\tan x + \tan^2 x + 1) = (1 + \tan x)^2 e^{2x}$	Н5
10	C	$x(x-2)\log_e x=0$ for $x=2,1$ ($x=0$ is outside the domain) \therefore 2 real roots	НЗ

Section II

Question 11

a. Outcomes assessed: P3

Marking Guidelines

	Criteria	Marks
expands the square		1
• simplifies	· · ·	1

Answe

$$(3-2\sqrt{2})^2 = 9-12\sqrt{2}+8=17-12\sqrt{2}$$

b. Outcomes assessed: P4

Marking Guidelines

Criteri a	Marks
factorises, completes the square or substitutes into the quadratic formula	1
• writes down both solutions	1

$$2x^2-5x-3=0$$
 $\therefore 2x+1=0$ or $x-3=0$

Q1 (cont)

c. Outcomes assessed: H5

	Marking Guidelines	
	Criteria	Marks
i • applies the chain rule		1
ii • applies the product rule	<u> </u>	

Answer

i.
$$\frac{d}{dx}\sin(1-x) = -\cos(1-x)$$

ii.
$$\frac{d}{dx}x\log_e x = 1.\log_e x + x.\frac{1}{x} = \log_e x + 1$$

d, Outcomes assessed: H5

Marking Guidelines

	Marking Odidennes	
	Criteria	Marks
differentiates		1 1
• finds the gradient of the tangent		1
finds the equation of the tangent		1

Answer

$$y = \frac{x}{x-1}$$

$$\frac{dy}{dx} = \frac{1 \cdot (x-1) - x \cdot 1}{(x-1)^2}$$

$$= \frac{-1}{(x-1)^2}$$

$$\therefore \text{ tangent at (2,2) has gradient } -1$$

$$\text{and equation } y-2 = -1(x-2)$$

$$y-2 = -x+2$$

$$y = -x+4$$

e. Outcomes assessed: H8

Marking Guidelines

. Ithir tally Guidennes		
Criteria	Ma	rks
finds the primitive function		1
• evaluates		1
• simplifies		<u> </u>

Answer

$$\int_{1}^{2} \frac{x+1}{x} dx = \int_{1}^{2} \left(1 + \frac{1}{x}\right) dx = \left[x + \ln x\right]_{1}^{2} = (2-1) + \left(\ln 2 - \ln 1\right) = 1 + \ln 2$$

f. Outcomes assessed: H8

Marking Guidelines

Marking Odidennes	
Criteria	Marks
• expresses the volume as a definite integral	1
• finds the primitive function	1
• evaluates	

Answei

$$V = \pi \int_0^1 \frac{1}{(2x+1)^2} dx = -\frac{\pi}{2} \left[\frac{1}{2x+1} \right]_0^1 = -\frac{\pi}{2} \left(\frac{1}{3} - 1 \right) = \frac{\pi}{3} \quad \therefore \text{ volume is } \frac{\pi}{3} \text{ cu. units}$$

Question 12

a, Outcomes assessed: H8

	Marking Guidelines	
	Criteria	Marks
· simplifies the integrand		1
finds the primitive function		1

Answe

$$\int \sec x (\cos x + \sec x) dx = \int (1 + \sec^2 x) dx = x + \tan x + c$$

b. Outcomes assessed: H6

Marking Guidelines

HINIMIS CHARACTER	
Criteria	Marks
• finds the second derivative	1
• finds the zero of the second derivative and the corresponding y value	1 1
• checks the change of sign of the second derivative near its zero to verify inflexion point	1

Answer

c. Outcomes assessed: P4

Marking Guidelines

	Watering Conferences		
	Criteria	Mai	rks
i • writes equation in required form		i	.
ii • states coordinates of vertex		1	
 states focal length 		i	
iii • states coordinates of focus	•	1	.
states equation of directrix		1	

i.
$$8y = x^2 - 6x + 1$$
 ii. Vertex $(3, -1)$, focal length 2
 $8y + 8 = x^2 - 6x + 9$
 $8(y+1) = (x-3)^2$ iii. Focus $(3, 1)$, directrix $y = -3$

$$(x-3)^2 = 4 \times 2\{y-(-1)$$

O12(cont)

d. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • finds the gradients of AB and BC and shows product is -1	1
• deduces ABCD is a rectangle, giving a reason	1
ii • finds equation of CD	1
• solves simultaneous equations for coordinates of C, finding one coordinate	1
• finds the second coordinate of C	1

Answer

i. $AB: x-2y-3=0$	BC: 2x+y-10=0	
x-3=2y	y = -2x + 16	m_{AB} , $m_{BC} = -1$ and $\angle ABC = 90^{\circ}$
$\frac{1}{2}x - \frac{3}{2} = y$: ABCD is a rectangle
$m_{\mu} = \frac{1}{2}$	$m_{BC} = -2$	(parallelogram with one vertex ∠ 90°)

ii. CD || AB : CD has equation x-2y=k for some constant k.

$$D(-1,3) \text{ on line } \Rightarrow -1-6=k \ \ \therefore k=-7$$
Hence at C
$$x-2y=-7 \quad (1) \quad (2)-2\times(1) \Rightarrow 5y=30 \qquad y=6 \ \ \Rightarrow x=2y-7=5$$

$$2x+y=16 \quad (2) \qquad y=6 \quad \ \therefore C \text{ has coordinates } (5,6)$$

Question 13

a. Outcomes assessed: H8

Marking Guidelines	
Criteria	Marks
• finds a primitive of the first term of the gradient function	1
• finds a primitive of the second term of the gradient function	1 1
• evaluates the constant to find the equation of the curve	1

Answer

$$f'(x) = \frac{1}{2}x + 4x^{-\frac{1}{4}} \qquad f(4) = 5 \implies 5 = \frac{1}{4} \times 16 + 8\sqrt{4} + c \qquad \therefore \text{ equation of curve is}$$

$$f(x) = \frac{1}{4}x^2 + 8x^{\frac{1}{2}} + c \qquad 5 = 20 + c \qquad \therefore c = -15 \qquad y = \frac{x^2}{4} + 8\sqrt{x} - 15$$

b. Outcomes assessed: P4, H8

Marking Guidelines	
Criteria	Marks
i • finds x coordinate of A	1
ii • writes definite integrals for required area	. 1
finds the primitive functions	1
• evaluates	1

Answer

i. At A,
$$x^2 - 2x = 4x - x^2$$
 ii. Area is given by
$$\int_{2}^{3} (x^2 - 2x) dx + \int_{3}^{4} (4x - x^2) dx$$
$$2x^2 - 6x = 0$$
$$2x(x - 3) = 0$$
$$\therefore x \neq 0 \Rightarrow x = 3$$
$$= \left[\frac{1}{3}x^3 - x^2\right]_{2}^{3} + \left[2x^2 - \frac{1}{2}x^3\right]_{3}^{4}$$
$$= \frac{1}{3}(27 - 8) - (9 - 4) + 2(16 - 9) - \frac{1}{3}(64 - 27)$$

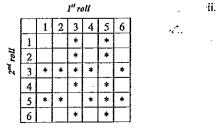
Area is 3 sq.units.

Q13(cont)

c. Outcomes assessed: H5, H9

Marking Guidelines	
Criteria	Marks
i • counts outcomes in required event	1
writes probability as a fraction	ا 1 .
ii • identifies reduced sample space and counts possible outcomes	- 1
counts outcomes in required event and writes probability as a fraction	1

Answer



	1 st roll .						
. [1	2	3	4	5	6
	1					√*	
	2					√]
Z" roll	3					√*	
7.1	4					1	
	5	√*	1	√*	1	√*	
[6						

Sample space has 36 equally likely outcomes. Required event has 18 outcomes *

Probability is $\frac{18}{36} = \frac{1}{2}$.

Sample space has 9 equally likely outcomes √. Required event has 5 outcomes * Probability is §

d. Outcomes assessed: H8

Marking Guidelines	
Ćriterla	Marks
• uses correct x values and value of h	1
substitutes correctly into formula	1
calculates correctly	1
• makes no intermediate rounding errors and expresses approximation to 2 significant figures	1

	х	1	3	5	7	9	h = 2
	f(x)	0	$(\ln 3)^2$	$(ln5)^2$	$(\ln 7)^2$	$(\ln 9)^2$	
Ì	×	1	4	2	4	1	

$$\int_{1}^{9} (\log_{e} x)^{2} dx \approx \frac{2}{3} \left\{ 0 + 4 \times (\ln 3)^{2} + 2 \times (\ln 5)^{2} + 4 \times (\ln 7)^{2} + (\ln 9)^{2} \right\}$$

$$\approx 19.988$$

$$\approx 20 \quad (to \ 2 \ sig. \ fig.)$$

Question 14

a. Outcomes assessed: H6

Marking Guidelines	
Criteria	Marks
• forms inequality with first derivative negative	1 [
• solves for x	1

Answer

$$y = x - x^2 \Rightarrow \frac{dy}{dx} = 1 - 2x$$
 $1 - 2x < 0$ $1 < 2x$ \therefore decreasing for $x > \frac{1}{2}$

b. Outcomes assessed: P4, H5

Marking Guidelines	
Criteria	Marks
• writes a pair of simultaneous equations from the given information	1 1
• uses elimination or substitution to write an equation in one pronumeral	1 1
• solves and finds both required values	1

Answer			
$T_8 = 23 \implies a + 7d = 23$	3a + 21d = 69	(1)	$(1)-(2) \Rightarrow 23d = 69$
$T_{11} = 4T_3 \implies a+10d = 4(a+2d)$	3a-2d=0	(2)	$\therefore d=3$ and $a=2$

First term 2, common difference 3.

c. Outcomes assessed: H1, H3

Marking Guidelines		
Criteria	Marks	
i • writes numerical expression for decrease in value	1	
calculates this decrease	1	
ii • writes numerical expression for percentage decrease	1	
calculates this percentage decrease		

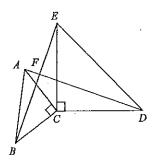
i.
$$\Delta V = 24\,000e^{-0.1\times 4} - 24\,000e^{-0.1\times 3} = 24\,000\left(e^{-0.4} - e^{-0.3}\right) \approx -1691\cdot 956$$
 Ans. \$1692 (nearest \$)
ii. $\frac{24\,000\left(e^{-0.4} - e^{-0.3}\right)}{24\,000e^{-0.3}} \times 100 = \left(e^{-0.1} - 1\right) \times 100 \approx -9\cdot 516$ Ans. 9.5% (to 1 decimal place)

Q14(cont)

d. Outcomes assessed: H2, H5

Marking Guidelines	
Criteria	Marks
i • applies an appropriate test for congruence, presenting conventional deductive proof	1
• explains why angles at C are equal	1 1
• notes given equalities of sides	1
ii • explains why triangle CDE has 45° angles at E and D	1 1
 writes ∠FED, ∠EDF in terms of ∠BEC, ∠ADC respectively 	1 1
• uses the congruence from i. to show $\angle EFD = 90^{\circ}$	1

In the diagram DC = EC and AC = BC.



i. In $\triangle BCE$, $\triangle ACD$ BC = AC(given) EC = DC(given) $\angle BCE = 90^{\circ} + \angle ACE \text{ (adding adj } \angle \text{'s, given } \angle BCA = 90^{\circ}\text{)}$ $\angle ACD = 90^{\circ} + \angle ACE \text{ (adding adj } \angle \text{'s, given } \angle ECD = 90^{\circ}\text{)}$ $\therefore \angle BCE = \angle ACD$ $\therefore \Delta BCE = \Delta ACD$ (SAS)

ii. In isosceles right $\triangle ECD$, $\angle CDE = \angle CED = 45^{\circ}$ (\(\rangle\) sum is 180°, \(\rangle\)'s opp. equal sides are equal) $\angle FED = \angle CED + \angle BEC = 45^{\circ} + \angle BEC$ $\angle EDF = \angle CDE - \angle ADC = 45^{\circ} - \angle ADC$ But $\angle BEC = \angle ADC$ (corresp. \angle 's in congruent Δ 's are equal) $\therefore \angle FED + \angle EDF = 90^{\circ}$

 $\therefore \angle EFD = 90^{\circ} \quad (\angle sum \ of \ \Delta \ is \ 180^{\circ})$

 $\therefore DA \perp BE$

Question 15

a. Outcomes assessed: H3, H8

-	Marking Guidelines	
	Criteria	Marks
• finds the primitive and evaluates e ⁰		1
 completes the evaluation 		1

$$\int_{0}^{\log_{x} 3} e^{2x} dx = \frac{1}{2} \left[e^{2x} \right]_{0}^{\ln 3} = \frac{1}{2} \left(e^{2\ln 3} - e^{0} \right) = \frac{1}{2} \left(e^{\ln 3^{3}} - 1 \right) = \frac{1}{2} \left(3^{2} - 1 \right) = 4$$

Q15 (cont)

b. Outcomes assessed: P4, H3

Marking Guidelines	
Criteria	Marks
• uses log laws to obtain quadratic equation in x	1
• factorises this quadratic (or completes square or applies quadratic formula)	1 1
• realises domain is restricted and quotes only one solution for x	1

Answer

$2\log_2 x - \log_2(x+4) = 1$ with domain $x > 0$	$\therefore x^2 = 2x + 8 \text{ and } x > 0$	•
$2\log_2 x = \log_2 2 + \log_2 (x+4)$	$x^2 - 2x - 8 = 0$	
$\log_2 x^2 = \log_2 2(x+4)$	$\therefore (x-4)(x+2)=0 and x>0$	$\therefore x = 4$

c. Outcomes assessed: H5, H7

Marking Guidelines

THE CHAPTER	
Criteria .	Marks
• uses differentiation to find the gradient of the normal OP	1
• uses coordinate geometry to find the gradient of OP and hence writes equation for x_1	1 1
• solves the equation	1 1

Answer

$$y = (a - x)^{\frac{1}{2}}$$

$$m_{OP} = \frac{y_1}{x_1}$$

$$= \frac{-1}{2\sqrt{a - x_1}}$$

$$m_{OP} = \frac{y_1}{x_1}$$

$$= \frac{\sqrt{a - x_1}}{x_1}$$

$$= \frac{\sqrt{a - x_1}}{x_1}$$

$$= \frac{\sqrt{a - x_1}}{\sqrt{a - x_1}} = \sqrt{a - x_1}$$

$$\sqrt{a - x_1}(2x_1 - 1) = 0$$

$$\therefore x_1 = a \quad \text{or} \quad x_1 = \frac{1}{2}$$

d. Outcomes assessed: H5, H8

Marking Guidelines

marking Guidennes	
. Criteria	Marks
i • finds one solution, using an appropriate trigonometric identity	1
states the second solution	1
ii • sketches one graph showing the intercepts on the axes	1
 sketches the second graph showing the intercepts on the axes 	1 1
iii • expresses the required area in terms of a definite integral	1
• finds the primitive	1 1
• evaluates	

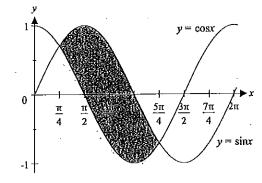
Answer

$$\sin x = \cos x \qquad 0 \le x \le 2\pi \qquad \therefore \tan x = 1$$

$$\frac{\sin x}{\cos x} = 1 \quad \text{(since } \cos x \ne 0\text{)} \qquad x = \frac{\pi}{4}, \frac{5\pi}{4}$$

Q15 d. (cont)

ii.



iii. The required area enclosed between the curves is given by

$$A = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} (\sin x - \cos x) dx$$

$$= -\left[\cos x + \sin x\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$= -\left\{\left(\cos \frac{5x}{4} - \cos \frac{x}{4}\right) + \left(\sin \frac{5x}{4} - \sin \frac{x}{4}\right)\right\}$$
Area is $2\sqrt{2}$ sq. units
$$= -\left\{-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right\}$$

$$= 2\sqrt{2}$$

Question 16

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • deduces the required expression for one limiting sum	1
• deduces the required expression for the second limiting sum	1
ii • takes a common denominator for the sum	1
 uses an appropriate trig, identity to simplify the sum and show it reduces to the product 	11

- i. Given the limiting sums exists (true for $x \neq m\frac{\pi}{2}$ for any integer m) $S_1 = 1 + \sin^2 x + \sin^4 x + \sin^6 x + \dots \text{ is the limiting sum of the GP with } a = 1, r = \sin^2 x$ $S_2 = 1 + \cos^2 x + \cos^4 x + \cos^6 x + \dots \text{ is the limiting sum of the GP with } a = 1, r = \cos^2 x$ $\therefore S_1 = \frac{1}{1 \sin^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \text{ and } \therefore S_2 = \frac{1}{1 \cos^2 x} = \frac{1}{\sin^2 x} = \csc^2 x$
- ii. $S_1 + S_2 = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} = \frac{\sin^2 x + \cos^2 x}{\cos^2 x \cdot \sin^2 x} = \frac{1}{\cos^2 x \cdot \sin^2 x} = S_1 S_2$

Q16(cont)

b. Outcomes assessed: H5, H3

Marking	Guideline

Marking Guidenits		
Criteria -	Marks	
i • solves $\dot{x}=0$	1 1 .	
ii • finds x values for $t=0$ and $t=2$	1	
• considers change of direction to find distance travelled	1	
iii • writes an equation for T	1	
• uses log laws to obtain required expression	<u> </u>	

i.
$$x = t - 3\log_a(t+1)$$

ii.
$$\dot{x} < 0$$
 for $t < 2$, $\dot{x} > 0$ for $t > 2$

$$\dot{x} = 1 - \frac{3}{t+1}$$

Particle is initially at x=0, moves left to $x=-(3\ln 3-2)$ at time

$$x=0 \Rightarrow t=2$$

t=2, then changes direction returning to x=0 at time t=T.

Particle at rest at time 2 s.

Distance travelled in first T seconds is $2(3\ln 3-2)$ m.

iii.
$$0 = T - 3\log_{\epsilon}(T+1)$$
 $\therefore T = 3\log_{\epsilon}(T+1)$

$$T = \log_{\epsilon}(T+1)^{3}$$

$$\therefore e^{T} = (T+1)^{3}$$

c. Outcomes assessed: H1, H4, H5

Marking Guidelines

Warking Guidennes		
Criteria	Marks	
i • uses fixed volume to express h in terms of r	1	
• expresses surface area in terms of r only	1	
ii • finds first derivative of S with respect to r	1	
• finds the zero of the first derivative	1	
• verifies that this zero corresponds to a minimum S value	1	
• finds the minimum S value	1	

Answer

i.
$$\pi r^2 h = 2000\pi$$

$$\therefore h = \frac{2000}{3}$$

ii.
$$\frac{dS}{dr} = 4\pi r - \frac{4000\pi}{r^2}$$

ii.
$$\frac{dS}{dr} = 4\pi r - \frac{4000\pi}{r^2}$$
 $\frac{d^2S}{dr^2} = 4\pi + \frac{8000\pi}{r^3} > 0$ for $r > 0$

$$\frac{dS}{dr} = \frac{4\pi}{r^2} \left(r^3 - 1000 \right)$$

$$\therefore \frac{dS}{dr} = \frac{4\pi}{r^2} (r^3 - 1000) \qquad \therefore \text{ Minimum } S \text{ for } r = 10 \text{ , } S_{\text{min}} = 2\pi \times 100 + \frac{4000\pi}{10}$$

$$\frac{dS}{dr} = 0$$
 for $r = 10$

 \therefore Minimum area is 600π cm²