NSW INDEPENDENT SCHOOLS

2010

Higher School Certificate Preliminary Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Board approved calculators may be used
- Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Write your student number and/or name at the top of every page

Total marks - 84

- Attempt Questions 1 − 7
- All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NAME / NUMBER.....

STUDENT NAME/NUMBER

Total marks – 84
Attempt Questions 1 - 7
All questions are of equal value.

Start each question in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	stion 1. (12 marks)	Marks
(a)	Evaluate $\sqrt[3]{6.91 \times 10^{-5}}$ correct to three significant figures.	2
(b)	Factorize $2x^2 + x - 28$.	2
` /		~
	: :	
	x = 2x+3 $x+2$	
(c)	Simplify $\frac{2x+3}{3} - \frac{x+2}{4}$.	2
	i :	
(4)	Express $(2\sqrt{3}+1)(2-\sqrt{3})$ in the form $a\sqrt{3}+b$.	_
(d)	Express $(2\sqrt{3}+1)(2-\sqrt{3})$ in the form $a\sqrt{3}+b$.	2
(e)	A pair of jeans were discounted by 15% to a selling price of \$63.75.	2
	Find the original marked price of the jeans before the discount was applied.	
	· · · · · · · · · · · · · · · · · · ·	
(f)	Solve the following inequality. $ 3x-5 \ge 2$.	2

2

(b) Simplify
$$\frac{x^2 - 9}{x^2 + x - 12}$$
.

(c) Consider
$$f(x) =\begin{cases} -3 & \text{if } x \le -1 \\ 2x - 3 & \text{if } x > -1 \end{cases}$$
. Evaluate $f(-1) + f(1)$.

- (d) Determine whether the function $f(x) = \frac{1}{x^2 4}$ is odd, even or neither odd nor even. WORKING MUST BE SHOWN.
- (e) Sketch graphs of the following functions and state the domain of each.

(i)
$$y = \frac{3}{2x-1}$$
.

(ii)
$$v = |2 - 3x|$$
.

(f) Solve
$$2\sin^2 x = 1$$
 where $-180^\circ \le x \le 180^\circ$.

Question 3. (12 marks) Start a new writing booklet.

(a)

Marks

C B NOT TO SCALE

The line l passes through C(-1, 2) and has equation y = 2x + 4. The point B has coordinates (1, -6) and the line AB is parallel to line l. Copy the diagram into your examination booklet writing the coordinates of B and C onto this diagram.

(i)	Find the length of the interval BC.	1
(ii)	Find the midpoint of BC.	1
(iii)	Write down the slope of the line l and find the angle l makes with the positive x —axis.	2
(iv)	Show that AB has equation $y = 2x - 8$.	1
(v)	If P is a point which lies on AB and on the line $y=2$, find the coordinates of P .	1
(vi)	Find the perpendicular distance of P from the line I .	2
(vii)	Find the size of $\angle ABC$ to the nearest minute.	1

Question 3. continued.

(b) A regular polygon has interior angles measuring 156°.
How many sides does the polygon have?

1

(c) The curve $y = ax^2 - 2x - 14$ has a gradient of 10 when x = 2. Find the value of a. 2

Marks

Question 4. (12 marks) Start a new writing booklet.

(a) Consider $f(x) = x^2 - 5x$

(i) Using $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or otherwise differentiate f(x) 2 from first principles to show that f'(x) = 2x - 5.

(ii) Find the gradient of the tangent when x = 1.

1

2

(iii) Find the equation of the normal through the point (1, -4).

(b) Find the exact value of cot 330°.

2

(c)

NOT TO SCALE

A tourist drives 35km from the town of Pine Vale (P) on a bearing of 140° T to the town of Radiatagrove (R).

He then drives 42km on a bearing of 38° T to the town of Spruceville (S).

Copy this diagram into your writing booklet.

Show that $\angle PRS = 78^{\circ}$.

1

(ii) Show that the distance from Spruceville to Pine Vale (SP) is 49km, correct to the nearest kilometre.

ii) Show the size of $\angle SPR = 57^{\circ}$ to the nearest degree.

1

2

(iv) Hence, or otherwise, find the bearing of Pine Vale from Spruceville.

Show all necessary working..

, (a)

NOT TO SCALE

ABC is an isosceles triangle in which AB = AC and $\angle BAC = 64^{\circ}$. *BC* is produced to *E*. *BD* bisects $\angle ABC$ and *CD* bisects $\angle ACE$.

Copy or trace the diagram into your writing booklet and mark on it all the given information.

(i) Find the size of $\angle ABC$ giving reasons.

1

(ii) Find the size of $\angle BDC$ giving reasons.

4

2

- (b) By expressing $\sec \theta$ and $\tan \theta$ in terms of $\sin \theta$ and $\cos \theta$, show that $\sec^2 \theta \tan^2 \theta = 1$.
- (c) If $\sin \theta = -\frac{4}{11}$ and $\tan \theta > 0$ find the exact value of $\cos \theta$.
- (d) Given the equation $3x^2 + 7x 4 = 0$ has roots α and β , without finding α or β evaluate $\alpha^2 + \beta^2$.

(e)

ABCD is a parallelogram. DC is produced to E. AE cuts BC at F. AD=16cm, CE=9cm and BF=10cm.

i) Prove that $\triangle ABF$ is similar to $\triangle ECF$.

2

ii) Find AB.

1

1

1

1

1

1

2

3

2

(a) For the parabola $(x-2)^2 = 8(y+3)$

- (i) Find the coordinates of the vertex.
- (ii) Find the value of the focal length.
- (iii) Find the coordinates of the focus.

夢れ

- (iv) Find the equation of the directrix.
- (v) Sketch the parabola labelling the vertex, focus and directrix.

(b)

NOT TO SCALE

AB = 7cm, BC = 4cm, ED = 6cm. Find AD giving reasons.

- (c) Express $9x^2 + 2x 5$ in the form ax(x+1) + b(x+1) + c.
- (d) For what values of k will the expression $kx^2 4x + k$ always be positive?

Question 7. (12 marks) Start a new writing booklet.

Marks

1

1

1

2

Evaluate $\lim_{x \to \infty} \frac{3x^2 - 2x - 6}{4 - 2x^2}.$

- (b) Find the value of k for which the equation $x^2 (k+4)x + (k-3) = 0$ has
 - (i) one root equal to -2.
 - ii) roots which are reciprocals of each other.
 - (iii) roots which are equal in absolute value but opposite in sign.
- (c) Find all real numbers x which satisfy the equation $x^4 = 8(x^2 + 6)$.
- (d) Differentiate

(i)
$$\frac{3x^2-5}{2x+1}$$
.

(ii)
$$\sqrt[5]{(2x+7)^2}$$
.

(e) Find, as a relationship between a, b and c, the condition for the quadratic equation in x

$$(a^2-b^2)x^2+2b(a-c)x+(b^2-c^2)=0$$

to have equal roots. Simplify your answer as far as possible.

End of paper

NSW INDEPENDENT TRIAL EXAMS – 2010 MATHEMATICS – YR 11 PRELIMINARY EXAMINATION - MARKING GUIDELINES

Que	stion 1		_
a)	$\sqrt[3]{6.91 \times 10^{-5}} = 0.4103564$	(1)	
	= 0.0410	(1)	
b)	$2x^2 + x - 28 = 2x^2 + 8x - 7x - 28$		
	=2(x+4)-7(x+4)	(1)	
	= (2x-7)(x+4)	(1)	
c)	$\frac{2x+3}{3} - \frac{x+2}{4} = \frac{4(2x+3)-3(x+2)}{12}$	(1)	
		(1)	
	$=\frac{8x+12-3x-6}{}$		
	- 		
	$= \frac{5x+6}{12}$ $(2\sqrt{3}+1)(2-\sqrt{3}) = 4\sqrt{3}-6+2-\sqrt{3}$	(1)	
d)	$(2\sqrt{3}+1)(2-\sqrt{3})=4\sqrt{3}-6+2-\sqrt{3}$	(1)	-
	$=3\sqrt{3}-4$	(1)	_
e)	$85\% \times Cost = \$63.75$	(1)	
	$Cost = 63.75 \div 0.85$		
	Cost = \$75.00	(1)	_
f)	$ 3x-5 \ge 2$		
	$3x-5\geq 2$		
	$3x \ge 7$		
	$x \ge \frac{7}{3}$	(1)	
	$\frac{\lambda \geq 3}{3}$	(1)	
	OR		
	$-(3x-5)\geq 2$		
	$-3x+5\geq 2$		
	$-3x \ge -3$		
	$x \le 1$	(1)	
	$\therefore x \le 1$ or $x \ge 2\frac{1}{2}$		
	3		

Que	Question 2		
a))	$\frac{2x-1}{5} = \frac{3x+2}{4}$		
	4(2x-1)=5(3x+2)		
	8x-4=15x+10	(1)	
	-14 = 7x		
46.1	x = -2	(1).	

b)	$\frac{x^2 - 9^3}{x^2 + x - 12} = \frac{(x - 3)(x + 3)}{(x + 4)(x - 3)}$	(1)
	$=\frac{x+3}{x+4}$ $f(-1)=-3$	(1)
c)	f(-1)=-3	
	f(1)=2(1)-3	
	=-1	
	f(-1)+f(1)=-3+-1	(1)
d)	=-4	(1)
	$f(x) = \frac{1}{x^2 - 4}$	
	$f(a) = \frac{1}{a^2 - 4}$	
	$f(-a) = \frac{1}{\left(-a\right)^2 - 4}$	
	$=\frac{1}{a^2-4}$	
	$a^2 - 4$ $= f(a)$	
	∴ even function	(1)
e) (i)	·] \	
(1)]	
	,	
		- -
) 	
	4	
	Damain, All walls bot as 1	(2)
	Domain:- All real x, but $x \neq \frac{1}{2}$	(2)
e) (ii)	4	
	3	
	2	
	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
	Domain:- All Real x.	(2)
f)	$\sin^2 x = \frac{1}{2}$	
		(0)
	$\sin x = \pm \frac{1}{\sqrt{2}}$	(2)
	x = 45°,135°, -45°, -135°	

		•
(vii)	$\sin\theta = \left(\frac{12}{\sqrt{5}} \div 2\sqrt{17}\right)$	
	$\theta = \sin^{-1}\left(\frac{6}{\sqrt{85}}\right)$	
	$\theta = 40^{\circ}36^{\circ}$	(1)
b)	$\frac{(n-2)180}{n} = 156$	
	(n-2)180 = 156n	
	180n - 360 = 156n	
	24n = 360	
	n = 15	(1)
c)	$y = ax^2 - 2x - 14$	
	y' = 2ax - 2	(1)
	At $x = 2$ $y' = 10$	
	10 = 2a(2) - 2	
	12 = 4a	
	a=3	(1)

CF.C.	stion 4	
a)i)	$f(x) = x^2 - 5x$	
11919		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	, , , , , , , , , , , , , , , , , , , ,	1
	$= \lim_{h \to 0} \frac{(x+h)^2 - 5(x+h) - (x^2 - 5x)}{h}$	(1)
	$\frac{1}{2}$ $+2xh+h^2-5x-5h-x^2$	+ 5/x
	$-\frac{1111}{h\to 0}$ h	
	$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - 5x - 5h - x^{2}}{h}$ $= \lim_{h \to 0} \frac{x^{4} (2x + h - 5)}{x^{4}}$	(1)
	$=\lim_{h\to 0}(2x+h-5)$	
ii)	=2x-5 $f'(x)=2x-5$	
	f'(1) = 2(1) - 5	
	=-3	. (1)
iii)	Gradient of normal = $\frac{1}{3}$	
	$y+4=\frac{1}{3}(x-1)$	(1)
	J	(*)
	3y+12 = x-1	
	x-3y-13=0	(1)
p)	$\cot 330^{\circ} = \frac{1}{\tan 330^{\circ}}$	
	$=-\frac{1}{\tan 30^{\circ}}$	(1)
	i	` '
	$=-\frac{1}{\frac{1}{\sqrt{c}}}$	
	$\sqrt{3}$	
	$=-\sqrt{3}$	(1)
c)	North •	
	† T	
		٠
	49km45°	S
	49km 45°/	
	P 57° /42km	
	$P = \sqrt{42km}$	
	35km 78°	
	R	
i)	$\angle PRS = (180 - 140) + 38$	
	= 40+38 SHOW	(1)
İ	= 78°	. ,
L		

ii)	$SP^2 = 35^2 + 42^2 - 2 \times 35 \times 42 \times \cos 78$		
	$SP = \sqrt{35^2 + 42^2 - 2 \times 35 \times 42 \times \cos 78}$		
	= 49 km		
iii)	$\frac{\sin\theta}{\sin\theta} = \frac{\sin 78}{\sin 78}$		
	42 = 49		
	$\sin\theta = \frac{\sin 78}{49} \times 42$	SHOW	(1)
	$\theta = \sin^{-1}\left(\frac{\sin 78}{49} \times 42\right)$		
	$\theta = 57^{\circ}$		
	OR		
	$\cos \theta = \frac{49^2 + 35^2 - 42^2}{2 \times 49 \times 35}$		
	$=\frac{1862}{3430}$		
	$\theta = \cos^{-1}\left(\frac{19}{35}\right)$		
	= 57°		
iv)	$\angle PSR = 180 - (57 + 78)$		(1)
	= 45°		(1)
	Bearing = $180 + 38 + 45$		
	= 263°		(1)

Cirroe	tío n 6	
e)	$(x-2)^2 = 8(y+3)$	
(i)	Vertex = (2, -3)	(1)
(ii)	$(x-2)^2 = 4(2)(y+3)$	
	a=2	(1)
(iii)	Draw sketch as you go to help	answer the
	question. Get parabola with the concavity.	ne correct
	Focus $=(2,-1)$	(1)
(iv)	Directrix $y = -5$	(1)
(v)) jy	7
	*	
	2-	. /
		X 1 6 8 1
	-4 -2 2 (2, -	1) 6/8 1
	2	
	(2, -3)
	y = -5	
	21	(1)
b)	$\frac{AE}{ED} = \frac{AB}{BC}$ (lines cut o	ff intercepts
Ì		
	$\frac{AE}{6} = \frac{7}{4}$ in the	e same ratio)
	$AE = \frac{7}{4} \times 6$	
	$AE = 10\frac{1}{2}$	(1)
	AD = AE + ED	
	$=10\frac{1}{2}+6$	
	_	443
	$=16\frac{1}{2}$	(1)
c)	$9x^2 + 2x - 5 = ax(x+1) + b(x)$	(+1)+c
	Let $x = -1$ 9 - 2 - 5 = c	
	y-z-3=c $c=2$	(1)
	$9x^2 + 2x - 5 = ax(x+1) + b(x+1)$	
	Let $x = 0$,
	-5 = b + 2	
	b = -7	(1)
	$9x^2 + 2x - 5 = ax(x+1) - 7(x+1)$	x+1)+2

