NSW INDEPENDENT SCHOOLS

2012

Higher School Certificate

Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in Question 11 16
- Write your student number and/or name at the top of every page

Total marks – 100

Section I - Pages 3 - 7

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 8-15

90 marks

Attempt Questions 11 – 16

Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

Section I

10 marks
Attempt Questions 1–10
Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

	A	В	C	D
1				
2				
3				
4				
5				
6				
7		٠.		
8				
9				
10				

- 1. For what values of k does the equation $x^2 6x 3k = 0$ have real roots?
 - A. $k \ge -3$
 - B. $k \leq -3$
 - C. $k \ge 3$
 - D. $k \le 3$
- 2. For the function y = f(x), a < x < b graphed below:

which of the following is true?

- A f'(x) > 0 and f''(x) > 0
- B f'(x) > 0 and f''(x) < 0
- C f'(x) < 0 and f''(x) > 0
- D f'(x) < 0 and f''(x) < 0

Which expression will give the area of the shaded region bounded by the curve 3. $y = x^2 - x - 2$, the x-axis and the lines x = 0 and x = 5?

A
$$A = \left| \int_0^1 (x^2 - x - 2) dx \right| + \int_1^5 (x^2 - x - 2) dx$$

B
$$A = \int_0^1 (x^2 - x - 2) dx + \left| \int_1^5 (x^2 - x - 2) dx \right|$$

C
$$A = \left| \int_{0}^{2} (x^{2} - x - 2) dx \right| + \int_{2}^{5} (x^{2} - x - 2) dx$$

B
$$A = \int_{0}^{1} (x^{2} - x - 2) dx + \left| \int_{1}^{5} (x^{2} - x - 2) dx \right|$$
C $A = \left| \int_{0}^{2} (x^{2} - x - 2) dx \right| + \int_{2}^{5} (x^{2} - x - 2) dx$
D $A = \int_{0}^{2} (x^{2} - x - 2) dx + \left| \int_{2}^{5} (x^{2} - x - 2) dx \right|$

Two ordinary dice are rolled. The "score" is the sum of the numbers on the top faces. What is the probability that the score is 9?

A
$$\frac{3}{4}$$

$$B$$
 $\frac{1}{3}$

$$C \qquad \frac{1}{4}$$

$$D = \frac{1}{9}$$

5.
$$\sum_{n=3}^{7} 2n + 3 =$$

What are the coordinates of the focus of the parabola $4y = x^2 - 8$?

$$A \qquad (0,-8)$$

$$C (0,-2)$$

D
$$(0,-1)$$

What is the derivative of $\cos^2 3x$ with respect to x?

A
$$-2\sin 3x\cos 3x$$

B
$$-6\sin 3x\cos 3x$$

C
$$2\sin 3x \cos 3x$$

D
$$6\sin 3x \cos 3x$$

- 8. What is the value of $\int_0^1 (e^{3x} 1) dx$?
 - A $\frac{e^3}{3}$
 - $B \qquad \frac{e^3}{3} 1$
 - C $e^{3}-1$
 - $D \qquad \frac{1}{3} \left(e^3 4 \right)$
- 9. The displacement, x metres, from the origin of a particle moving in a straight line at any time, t seconds, is shown in the graph.

When was the particle at rest?

- A t=0
- B t=1 and t=4
- C t=2 and t=4
- D t = 1, t = 2 and t = 4

- 10. What are the domain and range of the function $f(x) = \sqrt{4-x^2}$?
 - A Domain: $-2 \le x \le 2$, Range: $0 \le y \le 2$
 - B Domain: $-2 \le x \le 2$, Range: $-2 \le y \le 2$
 - C Domain: $0 \le x \le 2$, Range: $-4 \le y \le 4$
 - D Domain: $0 \le x \le 2$, Range: $0 \le y \le 4$

Section II

90 marks Attempt Question 11 – 16 Allow about 2 hours 45 minutes for this section

Answer the questions on your own paper, or writing booklets if provided. Start each question on a new page.
All necessary working should be shown in every question.

		Mark
Questi	on 11 (15 marks)	
a)	Differentiate:	
	(i) $x \tan 2x$	2
	(ii) $e^{4x} + \frac{1}{x}$	2
	$(iii) \qquad \frac{3x-7}{3+2x}$	2
b)	Find:	
	(i) $\int (5x-1)^9 dx$	2
	(i) $\int (5x-1)^9 dx$ (ii) $\int \sin \frac{2x}{3} dx$	2
		3
c)	Solve $2\sin x + \sqrt{3} = 0$ for $0 \le x \le 2\pi$.	
d)	Find the exact area of the shaded major sector of the circle with radius 4 cm.	2

			Marks
Questi	on 12 (15 marks)	
a)	Jeff aı	nd Jonas each throw a standard die.	
	(i)	Find the probability that they do not throw the same number.	1
	(ii)	Find the probability that the number thrown by Jonas is less than the number thrown by Jeff.	1
b)	The s	um of the first n terms of an arithmetic series is given by: $S_n = n(38-2n)$	
	.(i)	Calculate S_1 and S_2 .	2
	(ii)	Find the first three terms of this series.	2 ,
	(iii)	Find an expression for the <i>n</i> -th term.	. 2
c)	Cons	ider the lines $2x - y + 1 = 0$ and $x + 2y - 7 = 0$ which intersect at point P.	
	(i)	By solving the equations simultaneously verify that point P has coordinates $(1,3)$.	1
		point $A(3,7)$ lies on the line $2x-y+1=0$ and point $B(-3,5)$ lies on the $x+2y-7=0$.	
	(ii)	Find the perpendicular distance of A from the line $x+2y-7=0$.	2
	(iii)	Draw a number plane showing the position of the points A, B and P and the lines $2x-y+1=0$ and $x+2y-7=0$.	. 1
	(iv)	Show the lines $2x - y + 1 = 0$ and $x + 2y - 7 = 0$ are perpendicular.	. 1
	(v)	Determine, using coordinate methods, what type of right angled triangle ABP is.	2

Question 13 (15 marks)

a)

In $\triangle PQR$, point T lies on side QR and point S lies on side PR such that QT=TR, QS=QP and $ST\perp QT$.

Copy the diagram into your answer booklet showing all given information.

(i) Prove that $\triangle QTS = \triangle RTS$.

2

2

Marks

(ii) Prove that $\angle QPS = 2\angle TQS$.

(b)

A circular sector *OXYZ* has radius r cm and $\angle XOZ$ measures θ radians. If the arc XYZ has a length of 10π and $\theta = \frac{2\pi}{3}$ find the exact length of chord XZ.

- (c) Consider the function $f(x) = x^4 4x^3$.
 - (i) Find the stationary points on the curve and determine their nature.
 - (ii) Find any points of inflexion.
 - (iii) Sketch the curve $f(x) = x^4 4x^3$ showing all important features including the intercepts.

(c)	(0)	

Question 14 (15 marks)

a) Peta is saving to buy a new car. She needs \$12 700 for the car.
The first month she saves \$25. The next month she saves \$40. The following month she saves \$55.

If she continues to increase the amount she saves by \$15 each month how many months does it take Peta to save for her car?

Marks

3

2

2

2

The probability that a rare plant grows to maturity in a nursery is $\frac{1}{9}$.

What is the least number of plants that would need to be in the nursery to have at least a 95% chance of one plant reaching maturity?

Use Simpson's Rule with 5 function values to find an approximate value of $\int_{2}^{4} \frac{x}{2} \ln x dx.$

- (d) (i) Differentiate $\ln(\sin x)$.
 - (ii) Sketch the curve $y = \cot x$ for $0 < x < \pi$ clearly indicating where it crosses the x-axis.
 - (iii) Hence, or otherwise, find the exact area bounded by the curve $y = \cot x$, the x-axis and the line $x = \frac{\pi}{4}$.

1

Ouestion 15 (15 marks)

- Joe is trying to fill his 1 200 litre water tank.
 The first day he puts 100 litres into the tank, the 2nd day he puts in 90 litres and the third day he puts in 81 litres.
 If he continues to add water in this way will he ever fill the tank?
 Justify your answer.
- (b) At the entrance to a mine there are electricity wires. The height (H) of the wires above the ground at the mine entrance varies with the outside temperature (t) and is given by the $H = 21.6 + \frac{120}{t 105}$, where H is in metres and t is in degrees Celsius.
 - (i) Find the height of the wire when the temperature is $-3^{\circ}C$.
 - (ii) The company has a piece of equipment which is 13.3 m high. All equipment entering the mine must stay at least 6.7 m below the wires. Find the maximum temperature which will allow the equipment to safely pass under the wire.
- (c) Charlemagne is designing a glass fruit bowl with a capacity of 2 litres. He rotates the curve $y = 5\sec\left(\frac{x}{6}\right)$ about the x-axis as shown on the diagram from x = 0 to x = a.

- (i) Find the height of the bowl in cm.
 Give your answer correct to the nearest cm.
 Note, the bowl is on its side and the height of the bowl is the distance 0a.
- (ii) Hence find the diameter of the top of the bowl.

Question 15 continued

(d)

- The acceleration of a particle is given by $\ddot{x} = 6t 16$, where x is displacement in metres and t is time in seconds. Initially its velocity is 5 m s⁻¹ and its displacement is 7 metres to the left of the origin.
 - (i) Show that the displacement of the particle is given by: $x = t^3 8t^2 + 5t 7$
 - Find when and where the particle comes to rest.
 - (iii) Does the particle ever pass through the origin? Justify your answer.

1

2

2

Question 16 (15 marks)

(a) A tyre factory was required to install a filter to limit the pollution it emitted into the atmosphere.

The rate of emission, $\frac{dE}{dT}$, in kg per month of pollution from the factory is given by

$$\frac{dE}{dt} = 100 + \frac{300}{1+t}$$

where t is time in months measured from when the factory initially installed the filter.

(i) Find the initial rate of emission $\frac{dE}{dt}$.

(ii) What will the rate of emission $\frac{dE}{dt}$ eventually tend towards?

- (iii) Calculate the total amount of pollution emitted by the factory in the first year of operation with the filter.
- (b) A radioactive plutonium isotope is decaying and releasing radiation. The amount of radiation A at time t, in years, is given by

$$A = A_0 e^{-2.89 \times 10^{-5} t}$$

where A_0 is the initial amount of radiation.

Find the half-life of plutonium, to the nearest 10 years.

(c) Felicity has just commenced work and is investigating superannuation funds. She calculates that she will need \$1 000 000 in her fund when she retires in 40 years. She finds a fund guaranteeing to pay interest on each deposit at the rate of 6% per annum compounded monthly.

She intends to deposit SM into the fund at the beginning of each month for 40 years. (480 months).

After 25 years she intends to double the amount she deposits each month. That is, she will deposit a further M into the fund for the remaining 15 years. (180 months).

- (i) Show that the value of M can be found using the formula $1000000 = 201M (1.005^{480} + 1.005^{180} 2)$
- (ii) Find the value of M.

-

Question 16 continued

(d) The diagram shows the graph of $y = (x-b)^2$.

 $T\left(t,(t-b)^2\right)$ is a point on the curve such that 0 < t < b.

The tangent at T is drawn to intersect with the x and y axes at the points A and B respectively as shown.

(i) Show that the tangent to the curve at T is given by y = (2x - t - b)(t - b).

2

(ii) Find the coordinates of the point T, in terms of b, which will maximise the area of $\triangle ABO$.

End of paper

NSW INDEPENDENT TRIAL EXAMS – 2012 MATHEMATICS HSC TRIAL EXAMINATION MARKING GUIDELINES

Section 1:

Section		Solution	Marks
1)		$x^2 - 6x - 3k = 0$	A
-/		l control of the cont	
		Δ≥0	
		$\Delta = 36 + 12k$	
		$36+12k \ge 0$	
		$12k \ge -36$	
		k≥-3	
2)	İ	Decreasing function – first derivative negative	C
2)		Concave up – second derivative positive	. C
3)		$y = x^2 - x - 2$	
		y = (x-2)(x+1)	
		x – intercept, $x = 2$	
4)		(6,3)(5,4)(4,5)(3,6)	D
1		$P(9) = \frac{4}{36}$	
		$\Gamma(9) = \frac{1}{36}$	
		$=\frac{1}{9}$	
		9	
5)		$\sum_{n=2}^{7} 2n+3=9+11+13+15+17=65$	В
		n=3	
6)	-	$4y = x^2 - 8$	D ·
	-	$x^2 = 4y + 8$	
	ļ	$x^2 = 4(y+2)$	
1	;	Vertex $(0,-2)$, Concave up. Focal length $a=1$	
		Focus (0,-1)	-
7)		$\frac{d}{dx}\cos^2 3x = 2 \cdot \cos 3x \times -3 \sin 3x$	В
1			
		$=-6\sin 3x\cos 3x$	D
8)		$\int_{0}^{1} (e^{3x} - 1) dx = \left[\frac{1}{3} e^{3x} - x \right]_{0}^{1}$	D .
		$=\left(\frac{e^3}{3}-1\right)-\left(\frac{e^0}{3}-0\right)$	
		$=\frac{e^3}{3}-1-\frac{1}{3}$	
		$=\frac{e^3-4}{3}$	
9)	 	At rest, stationary point.	C
10)	 	Domain $4-x^2 \ge 0$ Range $0 \le y \le 2$	A
		$x^2 \le 4$	
ĺ		$\begin{array}{c} x \leq 4 \\ -2 \leq x \leq 2 \end{array}$	
	ـنــنــلـ	<u>-∠≥x≥∠</u>	

Section II		T-2
Question	Solution	Marks
11) a)(i)	$\frac{d}{dx}(x\tan 2x) = \tan 2x + x.2\sec^2 2x$	1 attempt at the product rule and correct differention of tan 2x
	$= \tan 2x + 2x \sec^2 2x$	1 correct answer
a)(ii)	$\begin{vmatrix} \frac{d}{dx} \left(e^{4x} + \frac{1}{x} \right) = \frac{d}{dx} \left(e^{4x} + x^{-1} \right) \\ = 4e^{4x} - x^{-2} \end{vmatrix}$	1 correct differentiation of exp or neg indice 1 correct answer
a)(iii)	$ = 4e^{4x} - x^{-2} $ $ \frac{d}{dx} \frac{3x - 7}{3 + 2x} = \frac{3(3 + 2x) - 2(3x - 7)}{(3 + 2x)^2} $	1 for correct quotient rule
	$=\frac{9+6x-6x+14}{\left(3+2x\right)^2}$	
	$=\frac{23}{\left(3+2x\right)^2}$	1 correct answer
11) b)(i)	$\int (5x-1)^9 dx = \frac{(5x-1)^{10}}{5\times 10} + c$	1 correct index
	$=\frac{(5x-1)^{10}}{50}+c$	1 correct answer
b)(ii)	$\int \sin\frac{2x}{3} dx = -\frac{3}{2}\cos\frac{2x}{3} + c$	1 correct integration of cos 1 correct "constant"
11) c)	$2\sin x + \sqrt{3} = 0$ $2\sin x = -\sqrt{3}$	1 correct acute angle $\frac{\pi}{3}$
	$\sin x = -\frac{\sqrt{3}}{2}$	1 for $\frac{4\pi}{3}$
	$x = \pi + \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$ $4\pi - 5\pi$	1 for $\frac{5\pi}{3}$
	$x = \frac{4\pi}{3}, \frac{5\pi}{3}$	1 for correct and as
11) d)	$A = \frac{1}{2} \times \frac{11\pi}{6} \times 4^2$	1 for correct angle or correct formula.
	$=\frac{44\pi}{3}cm^2$	1 correct answer

[]nest	tion	Solution	Marks
12)		Jo 1 Jo 2 Jo 3 Jo 4 Jo 5 Jo 6 Je 1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 Je 2 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 Je 3 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 Je 4 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 Je 5 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 Je 6 6, 1 6, 2 6, 3 6, 4 6, 5 6, 6	
	a)(i)	$P(different) = \frac{5}{6}$	1 correct answer
	a)(ii)	$P(E) = \frac{15}{36} = \frac{5}{12}$	1 for correct answer
12)	b)(i)	$S_n = n(38-2n)$ $S_1 = 1(38-2)$ = 36	1 for correct S_1
	b)(ii)	$S_2 = 2(38-4)$ = 2×34 = 68 $T_2 = S_2 - S_1$	1 for correct S ₂
		$= 68 - 36$ $= 32$ $d = -4$ $T_3 = 28$	1 for value of T_2
		36, 32, 28,	1 for value of T_3
	b)(iii)	$T_n = 36 + (n-1)(-4)$ $= 36 - 4n + 4$ $= 40 - 4n$	1 correct formula 1 correct answer
12)	c)(i)	$2x-y+1=0 \dots (1)$ $x+2y-7=0 \dots (2)$ $4x-2y+2=0 \dots (3)=(1)\times 2$	1 correct answer
		5x-5=0 (2)+(3) 5x=5 x=1	
	c)(ii)	2 - y + 1 = 0 y = 3 $ 3 + 2(7) - 7 $	1 correct d
-	-)(11)	$d = \frac{ 3+2(7)-7 }{\sqrt{1+4}}$ $= \frac{10}{\sqrt{5}}$	
		$\sqrt{5}$ $=2\sqrt{5}$	1 correct answer

Ques		Solution	Marks
12)	c)(iii)	7 × A(3,7)	
		6	
		$B(-3,5)$ $\stackrel{3}{\downarrow}$	en e
		P(1,3)	
	2.5.2	2	
	1	x + 2y - 7 = 0	1 correct points on correct
		-4 -3 -2 -1 1 2 3 4 ±	lines.
		$2x-y+1=0/\frac{1}{2}$	4
	c)(iv)	2x - y + 1 = 0	
] .	y = 2x + 1	
		$m_1 = 2$	
	,	x+2y-7=0 $2y-7-x$	
		$2y = 7 - x$ $y = \frac{7}{2} - \frac{1}{2}x$	
		$y = \frac{7}{2} - \frac{1}{2}x$	-
		$m_2 = -\frac{1}{2}$	
		$m_1 m_2 = 2 \times -\frac{1}{2}$	
			1 correct reasoning and
		$ = -1 $ $ \therefore 2x - y + 1 = 0 \text{ and } x + 2y - 7 = 0 \text{ are perpendicular} $	conclusion
	c)(v)	Given lines are perpendicular $AP = 2\sqrt{5}$	
		$BP = \sqrt{(1+3)^2 + (3-5)^2}$	
	-	$=\sqrt{16+4}$	1 for right angle triangle
		$=\sqrt{20}$	1 for isosceles triangle
	\ ,	$=2\sqrt{5}$	1 for isosceres mangle
L	<u> </u>	∴ ΔAPB is a right angle isosceles triangle	`

بيائي د			
ues	tion .	Solution	Marks
13) .	a)	Q X	
		P $2x$ $2x$ R	
	a)(i)	In $\triangle QTS$ and $\triangle RTS$ $TS = TS$ common (S)	1 for 2 pairs correct sides or angles with reasons
		$\angle QTS = \angle RTS$ given $ST \perp QT$ (A) $QT = TR$ given (S) $\therefore \Delta QTS \equiv \Delta RTS$ (SAS)	1 for 3 rd pair of sides or angles plus correct reason for congruence.
	a)(ii)	Let $\angle TQS = x$ $\angle TRS = \angle TQS = x$ matching angles in congruent triangles $\angle QSP = \angle TQS + \angle TRS$ external \angle of triangle = sum or 2 opp int \angle 's $= 2x$	1 for first 2 steps
	-	$\angle QPS = \angle QSP$ base \angle 's of isosceles Δ , $QP = QS$ $= 2x$ $= 2\angle TQS$ since we let $\angle TQS = x$	1 correct proof
13)	b)	$l = \theta r$	
,		$10\pi = \frac{2\pi}{3}r$ $r = 15$	1 correct value of r
	-	$XZ^{2} = 15^{2} + 15^{2} - 2 \times 15 \times 15 \times \cos\left(\frac{2\pi}{3}\right)$ $= 675$	1 correct application of cosine rule
:		$XZ = \sqrt{675}$ $= 15\sqrt{3}$	1 correct answer

Ques	tion	Solution	Marks
13)	c)(i)	$f(x) = x^4 - 4x^3$	·
		$f'(x) = 4x^3 - 12x^2$	
		stationary points when $f'(x) = 0$	
	:	$4x^3 - 12x^2 = 0$	
		$4x^2(x-3)=0$	
	, .	x = 0,3	1 for values of x
		f(0) = 0	
	,	$f(3)=3^4-4(3)^3$	
		= –27	1 for y values
		SP = (0,0) (3,-27)	
		test stationary points $f''(x) = 12x^2 - 24x$	0+
		f''(0) = 0 test concavity $f''(x)$ +ve	-ve
		change in concavity, \therefore $(0,0)$ horizontal point of inflexion	1 correct identification of
		$f''(3) = 12(3)^2 - 24(3)$	horizontal P.O.I
		= 36 > 0 concave up	•
		∴ minimum at (3, –27)	1 correct identification of minimum
	c)(ii)	Possible points of inflexion occur when $f''(x) = 0$	·
		$12x^2 - 24x = 0$	
		12x(x-2)=0	1 for x values.
		x = 0.2	
		$f(2) = 2^{4} - 4(2)^{3}$ $\begin{array}{c cccc} x & 2^{-} & 2 & 2^{+} \\ \hline f''(x) & -ve & 0 & +ve \end{array}$	
•		=-16	1 for correct test & conclusion.
		Change in concavity ∴ (2,-16) is a P.O.I	(Origin already tested)
	c)(iii)	y	
		1 (0,0) 1 2 3 (4,0) 5	1 stationary points and shape for their
			information
		(2,-16)	1 correct intercepts and
			their points of inflexion
		(3,-27)	-

) ies	tion	Solution	Marks '
1.4)	a)	$S = 25 + 40 + 55 + \dots = 12700	,
		A.P $a = 25$, $d = 15$ and $S_n = 12700$. Find n .	,
		$12700 = \frac{n}{2} (50 + (n-1) \times 15)$	1 for identifying AP and
			knowing sum of an AP
•		25400 = n(50 + 15n - 15)	formula.
		=n(35+15n)	
		$5080 = 7n + 3n^2$	
		$3n^2 + 7n - 5080 = 0$	
-		$n = \frac{-7 \pm \sqrt{49 - 4 \times 3 \times -5080}}{6}$ $= \frac{-7 \pm \sqrt{61009}}{6}$	1 for forming correct
		6	quadratic equation
		$=\frac{-7\pm\sqrt{61009}}{}$	
		6	
,		$=\frac{-7\pm247}{6}$. '
		= 40 months (ignore negative answer)	1 correct answer
14)	b)	P(at least 1) = 1 - P(all dead)	1 for probability of plant
			dying and statement
		$1 - \left(\frac{8}{9}\right)^n \ge 0.95$	
		(8) ⁿ	
		$\left(\frac{8}{9}\right)^n \le 0.05$	
		(8)"	10 11 1 01 1
		$ \ln\left(\frac{8}{9}\right)^n \le \ln\left(0.05\right) $	1 for taking ln of both sides
		$n\ln\left(\frac{8}{9}\right) \le \ln\left(0.05\right)$	
		$n \operatorname{m} \left(\frac{1}{9} \right) \leq \operatorname{m} \left(0.03 \right)$. '
		$n \ge \ln\left(0.05\right) \div \ln\left(\frac{8}{9}\right)$	
		$n \ge 25.434$	
		n=26 You need to have at least 26 plants have at least a 95% chance that	1 for correct answer
		one grows to maturity.	

Quest	tion .	Solution	Marks
14)	c)	$f(x) = \frac{x}{2} \ln x$	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 for correct h
		$f(x)$ $\ln 2$ $\frac{5}{4} \ln \left(\frac{5}{2}\right)$ $\frac{3}{2} \ln (3)$ $\frac{7}{4} \ln \left(\frac{7}{2}\right)$ $2 \ln (4)$	1 correct simpson's rule
		0,693 1.1454 1.648 2.192 2.7726	
		$\int_{2}^{4} \frac{x}{2} \ln x dx \frac{1}{6} \left(0.693 + 2.7726 + 4 \left(1.1454 + 2.192 \right) + 2 \left(1.648 \right) \right)$ $= 3.352$	1 correct answer
14)	d)(i)	$\frac{d}{dx}\ln(\sin x) = \frac{\cos x}{\sin x}$ $= \cot x$	1 correct differentiation of ln function 1 correct differentiation of sin function
	d)(ii)	y .	1 for correct shape
		-g/4 g/4 s/2 3g/4 k	1 for 1 curve and correct intercept
	d)(iii)	y V	
	d)(m)		
		- Her Fig.	
		$A = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x dx$	
		$= \left[\ln(\sin x)\right]^{\frac{\pi}{2}}_{\frac{\pi}{4}}$	1 for correct integration
		$= \ln\left(\sin\frac{\pi}{2}\right) - \ln\left(\sin\frac{\pi}{4}\right)$	
,		$= \ln(1) - \ln \frac{1}{\sqrt{2}}$ $= 0 - \ln(2)^{\frac{1}{2}}$	1 for $-\ln \frac{1}{\sqrt{2}}$
		$=\frac{1}{2}\ln 2$	√2

Cones	tion	Solution	Marks
Question 15) a)		$S = 100 + 90 + 81 + \dots$	
- '		GP, where $a = 100$, $r = \frac{9}{10}$ limiting sum use $S_{\infty} = \frac{a}{1 - r}$	1 for recognising limiting sum and 1000l.
	-	$S = \frac{100}{1 - \frac{9}{10}}$	Bull alla 1000h
	-	= 1000 No will never fill the tank as the limiting sum is only 1000 litres	1 for correct answer and reason
15)	b)(i)	$H = 21.6 + \frac{120}{t - 105}$	
		$H = 21.6 + \frac{120}{-3 - 105}$	1 correct answer
	4) 419	=20.49m	
	b)(ii)	$H = 21.6 + \frac{120}{t - 105}$	
		$20 = 21.6 + \frac{120}{t - 105}$	1 for correct equation
		$-1.6 = \frac{120}{t - 105}$	·
		$t - 105 = \frac{120}{-1.6}$ $t - 105 = -75$	1
1		t = 30°	1 correct answer
15)	c)(i)	2 litres equivalent to 2000 cm ³	
13)		$2000 = \pi \int_{0}^{a} \left(5 \sec\left(\frac{x}{6}\right) \right)^{2} dx$	1 correct integral
		$=25\pi \int_0^a \sec^2\left(\frac{x}{6}\right) dx$	
		$\frac{80}{\pi} = \left[6 \tan \left(\frac{x}{6} \right) \right]_0^a$	1 for correct integration
		$\frac{80}{6\pi} = \tan\frac{a}{6} - \tan 0$	
	-	$\tan\frac{a}{6} = \frac{40}{3\pi}$	
	-	$\frac{a}{6} = \tan^{-1} \frac{40}{3\pi}$ $a = 6 \times 1.339397$	
		a=8.03638	
		a = 8cm Bowl is 8 cm high.	1 correct answer
ļ	c)(ii)	Bowl is 8 cm mgn. $d = 2 \times 5 \sec\left(\frac{8}{6}\right)$	
		= 42.5 cm wide	1 correct answer
1		Tario Cara Caracter	

Question		Solution	Marks
15)	d)(i)	$\ddot{x} = 6t - 16$	
		$\dot{x} = 3t^2 - 16t + c$	
		$At t = 0, \dot{x} = 5$	•
		5=c	
		$\dot{x} = 3t^2 - 16t + 5$	1 mark for velocity equation
		$x = t^3 - 8t^2 + 5t + k$	- cquation
		At $t = 0$, $x = -7$	
		-7 = k	1 mark for correctly shown
		$x = t^3 - 8t^2 + 5t - 7$	SHOWII
	d)(ii)	$\dot{x} = 3t^2 - 16t + 5$	
		$0 = 3t^2 - 16t + 5$	·
		0 = (3t-1)(t-5)	
		$t = \frac{1}{2}, 5$	1
		$l = \frac{1}{3}, 3$	1 mark for correct times.
		At $t = \frac{1}{3}$	
		$x = \left(\frac{1}{3}\right)^3 - 8\left(\frac{1}{3}\right)^2 + 5\left(\frac{1}{3}\right) - 7$	
		$=-6\frac{5}{27}$	1 correct first location
		At $t=5$	
		$x = (5)^3 - 8(5)^2 + 5(5) - 7$	
		=-57	1 correct location
	d)(iii)	Yes. Particle starts at $x = -7$, moves to the right for 1/3 of a second,	
		stops at $x = -6\frac{5}{27}$, moves left for a further $4\frac{2}{3}$ seconds, stops at	
		x = -57, then moves to the right. It doesn't stop again so it must pass through the origin.	1

Ques	tion	Solution	Marks
16)	a)(i)	$E = 100 + \frac{300}{1+t}$	
	}	At $t = 0$ $E = 400 kg / \text{month}$	1 correct answer
	a)(ii)	As $t \to \infty$, $E \to 100 \text{ kg/month}$	1 correct answer
-	a)(iii)	$P = \int_{0}^{12} \left(100 + \frac{300}{1+t}\right) dt$	1 correct integral
		$= \left[100t + 100 \ln(1+t)\right]_0^{12}$ = $\left(1200 + 100 \ln 13\right) - \left(0 + 100 \ln 1\right)$	
		$= (1200 + 100 \text{ mm})^{2} - (0 + 100 \text{ mm})^{2}$ $= 1456kg$	1 correct answer
16)	b)		1 for correct expression involving ½
			1 for correct answer

Quest	tion	Solution	Marks
16)	c)(i)	$A_{\rm l} = M\left(1.005\right)$	
		$A_2 = M (1.005)^2 + M (1.005)$	
		$A_3 = M(1.005)^3 + M(1.005)^2 + M(1.005)$,
		$A_{410} = M(1.005)^{450} + \dots + M(1.005)^{3} + M(1.005)^{2} + M(1.005)$	
		$= M\left(1.005 + 1.005^2 + 1.005^3 + \dots 1.005^{480}\right)$	
		$(1.005(1.005^{480}-1))$	
		$=M\left(\frac{1.005(1.005^{480}-1)}{1.005-1}\right)$	
		$=201M(1.005^{480}-1)$	1 compat armyagaian
		- 20112 (1.003	1 correct expression
		$B_1 = M(1.005)$	
		$B_2 = M(1.005)^2 + M(1.005)$	
		$B_{110} = M(1.005)^{100} + \dots + M(1.005)^{1} + M(1.005)^{2} + M(1.005)$	
		$(1.005(1.005^{180}-1))$	
•		$=M\left(\frac{1.005\left(1.005^{180}-1\right)}{1.005-1}\right)$	
		$=201M(1.005^{180}-1)$	
		$1000000 = 201M(1.005^{480} - 1) + 201M(1.005^{180} - 1)$	
		$=201M\left(1.005^{480}-1+1.005^{180}-1\right)$	
		$1000000 = 201M \left(1.005^{480} + 1.005^{180} - 2\right)$	1 correct expression
	c(ii)	$M = \frac{1000000}{10000000000000000000000000000$	·
		$M = \frac{1000000}{201(1.005^{480} + 1.005^{180} - 2)}$	1 correct answer
10	d)(i)	=\$435.97	
16)	(1)(1)	$y = (x-b)^2$	
- •		y' = 2(x-b) at $x = t$	
		m = 2(t-b)	1 for the gradient
		Equation of tangent.	1 for the gradient
		$y-(t-b)^2 = 2(t-b)(x-t)$	
		$y = 2(t-b)(x-t)+(t-b)^2$	
		=(t-b)(2(x-t)+t-b)	
		=(t-b)(2x-2t+t-b)	1
		y = (t-b)(2x-t-b)	1 correctly shown

Duest	ion	Solution	•	Marks .
16)	d)(ii)	Coordinates of A.		•
ĺ.	/ /.	y = (t-b)(2x-t-b)	** .	
		y = 0		
		0 = (t-b)(2x-t-b)		
	•	2x-t-b=0		·
•		2x = t + b		
		$x = \frac{t+b}{2}$		
		Coordinates of B .		
		y = (t-b)(2x-t-b)		
		x = 0		
		y = (t-b)(-t-b)		1 for <i>OA</i> & <i>OB</i>
		$y = b^2 - t^2$	Ÿ.	1 101 OA & OB
		Area of ΔABO		
		$A = \frac{1}{2} \times \frac{t+b}{2} \times \left(b^2 - t^2\right)$		
		$=\frac{1}{4}(t+b)(b^2-t^2)$		1 for area of triangle
		$A' = \frac{1}{4} ((b^2 - t^2) + -2t(t+b))$	•	
		$= \frac{1}{4} \left(b^2 - t^2 - 2t^2 - 2tb \right)$		
	,	$= \frac{1}{4} \left(b^2 - 3t^2 - 2tb \right)$,
		$= -\frac{1}{4} \left(3t^2 + 2bt - b^2 \right)$		
		$=-\frac{1}{4}(3t-b)(t+b)$		
		Max or min when $A'=0$		

16)	d)(ii) contd.	$0 = -\frac{1}{4}(3t - b)(t + b)$	
		$3t - b = 0 \qquad \text{or} t + b = 0$	
		3t = b $t = -b$ (disregard)	
		$t=\frac{b}{3}$	1 for value of t
		Test	
		$A' = -\frac{1}{4} \left(3t^2 + 2tb - b^2 \right)$	
	, .	$A'' = -\frac{1}{4}(6t + 2b)$	
		at $t = \frac{b}{3}$	·
		$A'' = -\frac{1}{4}(4b)$	
		=-b negative	
		: maximum area when	
		$t=\frac{b}{3}$	
		$y = \left(\frac{b}{3} - b\right)^2$	1 for value of y value.
		$=\frac{4b^2}{9}$	
		$T\left(\frac{b}{3},\frac{4b^2}{9}\right)$	