NSW INDEPENDENT SCHOOLS

2015 Higher School Certificate Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- · Write using black or blue pen
- A table of standard integrals is provided
- All necessary working should be shown in Question 11 – 16
- Write your student number and/or name at the top of every page

Total marks - 100

Section I - Pages 2-6

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 7 - 12

90 marks

Attempt Questions 11-16

Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int_{-x}^{1} dx = \ln x, \ x \ge 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Student name / number	
-----------------------	--

Marks

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

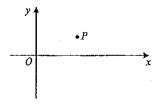
- 1 What is the value of $\lim_{h\to 0} \frac{\sqrt{h+1}-1}{h}$?
 - (A)
 - (B) 1/2
 - (C) 1
 - (D) 2
- 2 A, B, C are three consecutive terms in an arithmetic progression.

Which of the following is a simplification of $\frac{\sin(A+C)}{\sin B}$?

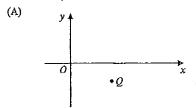
- (A) 2cos B
- (B) $\sin 2B$
- (C) $\cot B$
- (D) 1
- 3 What is the number of asymptotes on the graph of the curve $y = \frac{x^2}{x^2 1}$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

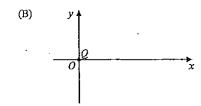
Marks

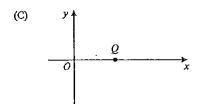
4 On the Argand diagram below, P represents the complex number z.

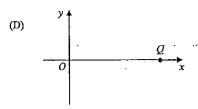


Which of the following Argand diagrams shows the point Q representing $z + \overline{z}$?









Student name / number _____

Marks

5 What is the acute angle between the asymptotes of the hyperbola. $\frac{x^2}{3} - y^2 = 1$?

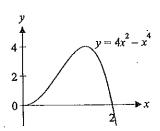
1

- (A)
- (B) 4
- (C) 43
- (D) 2

6 Which of the following is an expression for $\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx$ after the substitution $t = \tan \frac{x}{2}$? 1

- $(A) \qquad \int_0^1 \frac{1}{1+2t} \, dt$
- $(B) \qquad \int_0^1 \frac{2}{1+2t} \, dt$
- (C) $\int_0^1 \frac{1}{(1+t)^2} dt$
- (D) $\int_0^1 \frac{2}{\left(1+t\right)^2} dt$

7



The region in the first quadrant bounded by the curve $y=4x^2-x^4$ and the x axis between x=0 and x=2 is rotated through 2π radians about the y axis. Which of the following is an expression for the volume V of the solid formed?

$$(A) V = 2\pi \int_0^4 \sqrt{4-y} \, dy$$

(B)
$$V = 4\pi \int_{0}^{4} \sqrt{4-y} \, dy$$

$$(C) \qquad V = 8\pi \int_{0}^{4} \sqrt{4-y} \, dy$$

(D)
$$V = 16\pi \int_{0}^{4} \sqrt{4-y} \, dy$$

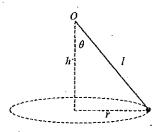
Student name / number

Marks

8 The equation $x^4 + px + q = 0$, where $p \neq 0$ and $q \neq 0$, has roots α, β, γ and δ . What is the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$?

- (A) -4
- (B) p^2-2q
- (C) $p^4 2q$
- (D) p^4

9



A particle of mass m attached to a string of length l is suspended from a point O with the string inclined at an angle θ to the vertical where $0 < \theta < \frac{\pi}{4}$. The particle moves with constant angular velocity ω in a horizontal circle of radius r at a distance h below O. The forces acting on the particle are the force due to gravity and the tension T in the string. Which of the following statements is NOT correct?

- (A) T > mg
- (B) $T = ml\omega^2$
- (C) $h = \frac{g}{\omega^2}$
- (D) $\tan \theta = \frac{g}{r\omega^2}$

10 What is the value of $S = \sum_{i=1}^{n} rp(1-p)^{r-1}$ where 0 ?

- (A) S =
- (B) $S = \frac{1}{2}$
- (C) $S = \frac{1}{1-x}$
- $(D) S = \frac{1}{p(1-p)}$

Student name / number	

Marks

3

Section II

90 Marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section.

Answer the questions in writing booklets provided. Use a separate writing booklet for each question. In Questions 11-16 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a separate writing booklet.

- (a) If z=1-2i and w=3+i find in the form a+ib, where a and b are real, the value of
 - (i) $z + \overline{y}$.
- (ii) $\frac{z}{w}$.
- (b) The complex number z is given by $z=2(\cos\theta+i\sin\theta)$, where $\frac{\pi}{4}<\theta<\frac{\pi}{2}$.
- (i) Express each of z^2 and $\frac{1}{z}$ in modulus/argument form.
- (ii) On an Argand diagram the points Q and R represent the complex numbers z^2 and $\frac{1}{z}$ respectively. If the points Q, O, R are collinear, find z in the form a+ib where a and b are real.
- (c) On an Argand diagram shade the region where both $|z-1| \ge 1$ and $-\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}$.
- (d) Let $I_n = \int_0^a (a-x)^n \cos x \, dx$, where a > 0 and n = 0, 1, 2, ...
 - (i). Show that $I_n = nq^{n-1} n(n-1)I_{n-2}$, for $n \ge 2$.
 - (ii) Hence find the value of $\int_0^{\frac{\pi}{2}} (\frac{\pi}{2} x)^2 \cos x \, dx$.

:: .Student name / number_____

Marks

3

Question 12 (15 marks)

Use a separate writing booklet.

- (a) Find the equation of the tangent to the curve $x^2 xy + y^3 = 1$ at the point P(1,1) on the curve.
- (b) Find $\int \frac{2x-3}{x^2-4x+5} dx$.
- (c) Use the substitution $x = \tan \theta$ to evaluate $\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1 + x^2}} dx$

The region bounded by the curve $\sqrt{x} + \sqrt{y} = 1$ and the x axis between x = 0 and x = 1 is rotated through 2π radians about the line x = 1.

- (i) Use the method of cylindrical shells to show that the volume V of the solid formed is given by $V = 2\pi \int_0^1 (1-x) (1-\sqrt{x})^2 dx$.
- (ii) Hence find the value of V in simplest exact form.

Student name / number _____

Marks

1

Question 13 (15 marks)

Use a separate writing booklet.

(a) The polynomial $P(x) = x^6 + ax^3 + bx^2$ has a factor $(x+1)^2$. Find the values of the real numbers a and b.

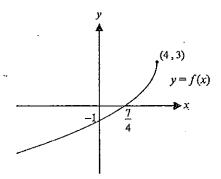
(b) The equation $x^4 + bx^3 + cx^2 + dx + k = 0$ has roots α , $\frac{1}{\alpha}$, β and $\frac{1}{\beta}$.

(i) Show that k=1.

(ii) Show that b=d.

(c) The equation $x^3 + 3x^2 + 2x + 1 = 0$ has roots α , β and γ . Find the monic cubic equation with roots α^2 , β^2 and γ^2 .

(d)



In the diagram the curve y = f(x) has equation $f(x) = 3 - 2\sqrt{4 - x}$.

On separate diagrams sketch the graphs of the following curves showing the coordinates of any endpoints, any intercepts on the axes and the equations of any asymptotes.

(i)
$$y = \log_{\epsilon} f(x)$$
.

(ii) $y = f^{-1}(x)$.

(iii)
$$y = \frac{1}{f(x)}$$
.

(iv) $y = f(x^2)$.

Ouestion 14 (15 marks)

Use a senarate writing booklet.

Student name / number

Marks

2

(a) A particle of mass $m \log 1$ is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{40}mv^2$ when the speed of the particle is $v \text{ ms}^{-1}$. After t seconds the particle has fallen x metres. The acceleration due to gravity is 10 ms^{-2} .

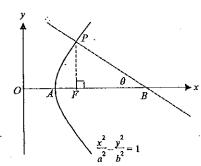
(i) Explain why $\ddot{x} = \frac{1}{40} (400 - v^2)$.

(ii) Find an expression for t in terms of v by integration.

(iii) Show that $v = 20 \left(1 - \frac{2}{1 + e^t} \right)$.

(iv) Find x as a function of t.

(b)



In the diagram, F is a focus of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with eccentricity e.

This branch of the hyperbola cuts the x axis at A where $AF = h \cdot P$ is the point on the hyperbola vertically above F and the normal at P cuts the x axis at B making an acute angle θ with the x axis.

(i) Show that $\tan \theta = \frac{1}{e}$.

(ii) Show that PF = h(e+1).

A bowl is formed by rotating the hyperbola above through one revolution about the x axis. The bowl is then placed on a horizontal table with point A on the table. A particle P of mass m is set in motion around the inside of the bowl, travelling with constant angular velocity ω in a horizontal circle with centre F.

(iii) Show that $\omega^2 = \frac{g}{he(e+1)}$.

(iv) We the popular reaction force between the particle P and the bowl. Show that

(iv) N is the normal reaction force between the particle P and the bowl. Show that if the hyperbola used to form the bowl is a rectangular hyperbola, then $\frac{N}{mg} = \sqrt{\frac{3}{2}}$.

. Student name / number

Marks

Marks

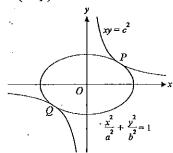
3

3

Question 15 (15 marks)

Use a separate writing booklet.

(a) The hyperbola $xy = c^2$, c > 0 touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0 at points P and Q, where $P\left(cp, \frac{c}{p}\right)$ lies in the first quadrant.

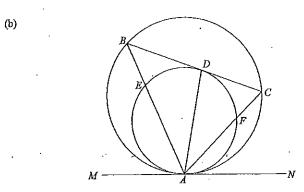


- (i) Explain why the equation $(bc)^2 t^4 (ab)^2 t^2 + (ca)^2 = 0$ has roots p, p, -p, -p where p > 0.
- (ii) Deduce that $p = \frac{a}{c\sqrt{2}}$ and $ab = 2c^2$.
- (iii) Show that if S and S' are the foci of the hyperbola $xy = c^2$, then the quadrilateral with vertices P, S, Q and S' has area 2c(a-b).
- (b)(i) If n is a positive integer and c>0, by considering the stationary values of $f(x) = \frac{1}{x} \left(\frac{x+c}{n+1}\right)^{n+1} \text{ for } x>0, \text{ show that } \frac{1}{x} \left(\frac{x+c}{n+1}\right)^{n+1} \ge \left(\frac{c}{n}\right)^n \text{ for } x>0 \text{ and state}$ when equality holds.
 - (ii) Deduce that for n+1 positive real numbers x_i , i=1,2,...,n+1 $\left(\frac{1}{n+1}\sum_{i=1}^{p+1}x_i\right)^{p+1} \ge x_{p+1}\left(\frac{1}{n}\sum_{i=1}^{p}x_i\right)^n.$
 - (iii) For any set of n positive real numbers x_i , i=1,2,...,n where $n \ge 2$, prove by mathematical induction that their arithmetic mean $\frac{1}{n}(x_1 \pm x_2 + ... \pm x_n)$ is greater than or equal to their geometric mean $(x_1x_2...x_n)^{\frac{1}{n}}$. State when equality holds, justifying your statement.
 - (iv) Deduce $(n!)^{\frac{1}{4}} < \frac{1}{2}(n+1)$.

Question 16 (15 marks)

Use a separate writing booklet.

a) If A(x) and B(x) are odd polynomial functions show that the product P(x) = A(x). B(x) is an even polynomial function.



In the diagram, MAN is the common tangent to two circles touching internally at A. B and C are two points on the larger circle such that BC is a tangent to the smaller circle with point of contact D. AB and AC cut the smaller circle at E and F respectively. Copy the diagram. Show that AD bisects $\angle BAC$.

- (c) a, b and c are real numbers such that a > b > c > 1.
- (i) Show that $a^a b^b c^c > a^b b^c c^a$.
- (ii) Hence show that $a \ln a + b \ln b + c \ln c > b \ln a + c \ln b + a \ln c$.
- (d) In an Argand diagram the points $P, P_1, P_2, P_3, ..., P_{n-1}$ represent the roots $1, \omega, \omega^2, ..., \omega^{n-1}$ respectively of the equation $z^n 1 = 0$, where $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.
- (i) Show that $(z-\omega)(z-\omega^2)...(z-\omega^{s-1})=1+z+z^2+...+z^{s-1}$ and hence show that $PP_1 \times PP_2 \times ... \times PP_{s-1} = P_{s-1}$
- (ii) Show that $PP_1^2 + PP_2^2 + ... + PP_{n-1}^2 = 2n$.

2

Question	Answer	Solution	Outcomes
1	В	$\lim_{h \to 0} \frac{\sqrt{h+1} - 1}{h} = \lim_{h \to 0} \frac{(h+1) - 1}{h(\sqrt{h+1} + 1)} = \lim_{h \to 0} \frac{1}{(\sqrt{h+1} + 1)} = \frac{1}{2}$	E2
2	A	$B = \frac{1}{2}(A+C) \therefore \frac{\sin(A+C)}{\sin B} = \frac{\sin 2B}{\sin B} = \frac{2\sin B\cos B}{\sin B} = 2\cos B$	E2
3	C	$y = \frac{x^2}{x^2 - 1} = 1 + \frac{1}{x^2 - 1}$ $x = 1$, $x = -1$ and $y = 1$ are asymptotes.	E6
4	D	$z+\overline{z}=2\operatorname{Re} z$, so Q lies on the x axis with twice the x coordinate of P.	E3
5	C	Asymptotes have gradients $\pm \frac{1}{\sqrt{3}}$. $\tan \theta = \begin{vmatrix} \frac{2\sqrt{3}}{3-1} \\ \end{vmatrix} = \sqrt{3}$ $\therefore \theta = \frac{\pi}{3}$	E3
6	D C	$t = \tan \frac{x}{2}$ $dt = \frac{1}{2} \sec^{2} \frac{x}{2} dx$ $1 + \sin x = 1 + \frac{2t}{1 + t^{2}} = \frac{\left(1 + t\right)^{2}}{1 + t^{2}}$ $\frac{2}{1 + t^{2}} dt = dx$ $\therefore \int_{0}^{\frac{t}{2}} \frac{1}{1 + \sin x} dx = \int_{0}^{1} \frac{1 + t^{2}}{\left(1 + t\right)^{2}} \cdot \frac{2}{1 + t^{2}} dt$	Е8
		$x = 0 \Rightarrow t = 0$ $x = \frac{\pi}{2} \Rightarrow t = 1$ $= \int_{0}^{1} \frac{2}{(1+t)^{2}} dt$	
7	A	$y = 4x^{2} - x^{4}$ $x^{4} - 4x^{2} + 4 = 4 - y$ $(x^{2} - 2)^{2} = 4 - y$ $(x^{2} - 2) = \pm \sqrt{4 - y}$ $x^{2} = 2 \pm \sqrt{4 - y}$ $y = 4x^{2} - x^{4}$ $= \pi \left\{ \left(2 + \sqrt{4 - y} \right) - \left(2 - \sqrt{4 - y} \right) \right\} \delta y$ $= 2\pi \sqrt{4 - y} \delta y$ $V = \lim_{\delta y \to 0} \sum_{j=0}^{r-4} 2\pi \sqrt{4 - y} \delta y = 2\pi \int_{0}^{4} \sqrt{4 - y} dy$	E7
8	A	$\alpha^{4} + p\alpha + q = 0$ $\beta^{4} + p\beta + q = 0$ $\gamma^{4} + p\gamma + q = 0$ $\delta^{4} + p\delta + q = 0$ $\delta^{4} + p\delta + q = 0$ $(\alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4}) + 0 + 4q = 0$ $(\alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4}) + (\alpha^{4} + \beta^{4} + \gamma^{4} + \delta^{4}) = -4q$	E4
9	D `	$T\cos\theta = mg \Rightarrow T > mg$ $T\sin\theta = mr\omega^2 = ml\sin\theta \ \omega^2 \Rightarrow T = ml\omega^2$ $\tan\theta = \frac{mr\omega^2}{mg} \Rightarrow h = \frac{r}{\tan\theta} = \frac{g}{\omega^2} \text{and} \tan\theta = \frac{r\omega^2}{g}$	E5
10	В	$S = p + 2p(1-p) + 3p(1-p)^{2} + 4p(1-p)^{3} + \dots $ $(1-p)S = p(1-p) + 2p(1-p)^{2} + 3p(1-p)^{3} + \dots $ $(1) - (2) \Rightarrow pS = p + p(1-p) + p(1-p)^{2} + p(1-p)^{3} + \dots $ $\therefore pS = \frac{p}{1-(1-p)} = 1 \qquad \therefore S = \frac{1}{p}$	E2

Section II

Question 11

a. Outcomes assessed: E3

Marking Guidelines	
Criteria	Marks
i • writes correct sum	1 1
ii • uses the complex conjugate of w to write with real denominator	1 1
• expands and simplifies numerator then expresses in required form	1

Answer

i.
$$z + \overline{w} = 1 - 2i + 3 - i = 4 - 3i$$

ii.
$$\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{(1-2i)(3-i)}{3^2+1^2} = \frac{1-7i}{10} = \frac{1}{10} - \frac{7}{10}i$$

b. Outcomes assessed: E3

Marking Guidelines	<u> </u>	, . -
Criteria		Marks
i • writes expression for square of z		1
• writes expression for reciprocal of z		1
ii • compares arguments to find θ	. •	1
a vertee a in remited form		1

Answer

i.
$$z = 2(\cos\theta + i\sin\theta)$$
 $\therefore z^2 = 4(\cos 2\theta + i\sin 2\theta)$ and $\frac{1}{z} = \frac{1}{2}(\cos(-\theta) + i\sin(-\theta))$

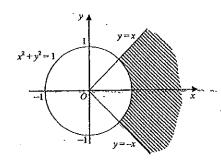
ii.
$$\frac{\pi}{2} < \arg z^2 < \pi$$
 and $-\frac{\pi}{2} < \arg \frac{1}{z} < -\frac{\pi}{4}$. $\therefore Q, O, R$ collinear $\Rightarrow \arg z^2 = \pi + \arg \frac{1}{z}$
 $2\theta = \pi + (-\theta)$

Hence
$$\theta = \frac{\pi}{3}$$
 and $z = 2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) = 1 + \sqrt{3} i$

c. Outcomes assessed: E3

Marking Guidelines	
Criteria	Marks
shows part of circle, centre origin and radius 1, as a boundary of the region	1
• shows lines $y = \pm x$ as boundaries of the region	1 [
• shades the correct region	1
- Shades are contestregion	

Answer



Q 11 (cont)

d. Outcomes assessed: E8

	Marking Guidelines	
	Criteria	Marks
i • uses integration by parts, evaluating the	first term	1
• uses integration by parts a second time		1
 simplifies to obtain required reduction t 	formula	1
ii • uses the reduction formula		1
• evaluates the remaining definite integra	1	1 1

Answer

i.

$$\int_{0}^{a} (a-x)^{n} \cos x \, dx = \left[(a-x)^{n} \sin x \right]_{0}^{a} - \int_{0}^{a} (-n)(a-x)^{n-1} \sin x \, dx$$

$$= 0 + n \left[(a-x)^{n-1} (-\cos x) \right]_{0}^{a} - n(n-1) \int_{0}^{a} (a-x)^{n-2} \cos x \, dx$$

$$\therefore I_{n} = na^{n-1} - n(n-1) I_{n-2}$$

ii.
$$a = \frac{\pi}{2}$$
 and $I_0 = \int_0^{\frac{\pi}{2}} \cos x \, dx = \left[\sin x\right]_0^{\frac{\pi}{2}} = 1$. $\therefore \int_0^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right)^2 \cos x \, dx = I_1 = 2\left(\frac{\pi}{2}\right) - 2I_0 = \pi - 2$

Question 12

a. Outcomes assessed: E6

Marking Guidelines	
Criteria	Marks
• differentiates implicitly to express derivative in terms of x and y	1
• evaluates this derivative at P to find the gradient of the tangent	1
• finds the equation of the tangent	1 1

Answer

$$x^{2}-xy+y^{3}=1$$

$$2x-\left(y+x\frac{dy}{dx}\right)+3y^{2}\frac{dy}{dx}=0$$

$$(3y^{2}-x)\frac{dy}{dx}=y-2x$$

$$x+2y-3=0$$
At $P(1,1)$, $\frac{dy}{dx}=\frac{y-2x}{3y^{2}-x}=-\frac{1}{2}$

$$\therefore \text{ Tangent at } P \text{ has gradient } -\frac{1}{2} \text{ and } equation } y-1=-\frac{1}{2}(x-1)$$

b. Outcomes assessed: E8

Marking Guidelines		
Criteria	Marks	
• rearranges the integrand into a sum of standard forms	1	Ţ
• finds one function part of the primitive	1	١
finds the second fluction part of the primitive	· 1···	_}

Answei

$$\int \frac{2x-3}{x^2-4x+5} dx = \int \left\{ \frac{2(x-2)}{(x-2)^2+1} + \frac{1}{(x-2)^2+1} \right\} dx = \ln\left\{ (x-2)^2+1 \right\} + \tan^{-1}(x-2) + C$$

Q12 (cont)

c. Outcomes assessed: E8

transforms integrand
converts limits
writes primitive function
evaluates using limits

Marking Guidelines
Criteria Marks
1
1

Answer

$$x = \tan \theta$$

$$dx = \sec^2 \theta d\theta$$

$$\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1 + x^2}} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \csc \theta \cot \theta d\theta$$

$$= -\left[\csc \theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$= -\frac{2}{\sqrt{3}} + \sqrt{2}$$

$$= \frac{2}{\sqrt{3}} + \sqrt{2}$$

$$x^2 \sqrt{1 + x^2} = \tan \theta \sin \theta \sec^2 \theta$$

$$= \frac{1}{3} \left(3\sqrt{2} - 2\sqrt{3}\right)$$

d. Outcomes assessed: E7, E8

Marking Guidelines	
Criteria	Marks
i • writes an expression for the volume of a typical cylindrical shell	. 1
• takes the limiting sum of shell volumes to express V as a definite integral	1
ii • expands the integrand	1
finds the primitive function	1
• evaluates V in simplest exact form	1

Answer

1.	R
<	<u>K</u>
<	<u>r_</u>
M	
(ATTE	
	h
ļ	-

K=1-x
$r=1-x-\delta x$
$h = \left(1 - \sqrt{x}\right)^2$
$\delta V = \pi (R+r)(R-r)h$
$=\pi\left\{2(1-x)-\delta x\right\}.\delta x.\left(1-\sqrt{x}\right)^{2}$

$$V = \lim_{\delta x \to 0} \sum_{x=0}^{x=1} 2\pi (1-x) (1-\sqrt{x})^2 \delta x$$
$$= 2\pi \int_0^1 (1-x) (1-\sqrt{x})^2 dx$$

$$V = 2\pi \int_0^1 \left(1 - x^2 - 2\sqrt{x} + 2x\sqrt{x}\right) dx$$
$$= 2\pi \left[x - \frac{1}{3}x^3 - \frac{4}{3}x^{\frac{3}{2}} + \frac{4}{3}x^{\frac{5}{2}}\right]_0^1$$
$$= \frac{4}{15}\pi$$

Question 13

a. Outcomes assessed: E4

Marking Guidelines	
- Criteria	Marks
• uses $P(-1) = 0$ to obtain one equation in a and b	1
• uses $P'(-1) = 0$ to obtain a second equation in a and b	1
• solves for a and b	1

Answer

$$P(x) = x^{5} + ax^{3} + bx^{2} P(-1) = 0 \Rightarrow a - b = 1 (1) (2) - 2 \times (1) \Rightarrow a = 0$$

$$P'(x) = 6x^{5} + 3ax^{2} + 2bx P'(-1) = 0 \Rightarrow 3a - 2b = 6 (2) (2) - 2 \times (1) \Rightarrow a = 0$$

b. Outcomes assessed: E4

Marking Guidelines	
Criteria	Marks
i • uses the product of the roots to deduce the value of k	1
ii • writes a second monic quartic equation satisfied by the reciprocals of the roots	1
• compares coefficients to deduce the result	1

Answer

$$x^4 + bx^3 + cx^2 + dx + k = 0$$
 i. $k = \alpha \cdot \frac{1}{\alpha} \cdot \beta \cdot \frac{1}{\beta} = 1$

ii. The reciprocals of the roots of $x^4 + bx^3 + cx^2 + dx + 1 = 0$ satisfy $\left(\frac{1}{x}\right)^4 + b\left(\frac{1}{x}\right)^3 + c\left(\frac{1}{x}\right)^2 + d\left(\frac{1}{x}\right)^4 + 1 = 0$ Hence α , $\frac{1}{\alpha}$, β and $\frac{1}{\beta}$ are also the roots of $x^4 + dx^3 + cx^2 + bx + 1 = 0$. This is only possible if the two monic quartic equations are identical. Hence comparing coefficients of x^3 or x, b = d.

c. Outcomes assessed: E4

Marking Guldelines	
Criteria	Marks
• writes an equation in terms of \sqrt{x} that is satisfied by the squares of α, β, γ	1
• rearranges this equation to eliminate surd expressions	1
• completes the rearrangement to obtain the equation as a monic cubic equation in the usual form	11

Answer

 α , β , γ satisfy $x^3 + 3x^2 + 2x + 1 = 0$. Hence α^2 , β^2 , γ^2 satisfy $\left(x^{\frac{1}{2}}\right)^3 + 3\left(x^{\frac{1}{2}}\right)^2 + 2\left(x^{\frac{1}{2}}\right) + 1 = 0$.

This second equation can be rearranged to give $x^{\frac{1}{2}}(x+2) = -(1+3x)$ and hence $x(x+2)^2 = (1+3x)^2$.

Hence α^2 , β^2 , γ^2 are roots of $x^3 + 4x^2 + 4x = 1 + 6x + 9x^2$.

Since the monic cubic equation with roots α^2 , β^2 , γ^2 is unique, required equation is $x^3 - 5x^2 - 2x - 1 = 0$.

:O13 (cont)

d. Outcomes assessed: E6

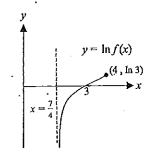
Marking Guidelines

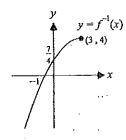
Criteria Marks

i • correct shape with endpoint, x intercept and asymptote shown
ii • correct shape with x and y intercepts and endpoint shown
iii • left branch correct shape with asymptote and y intercept shown
• second branch correct shape with endpoint shown
iv • correct shape and position with y intercept shown
• x intercepts and endpoints shown

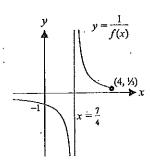
I

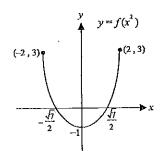
Abswer





iii.



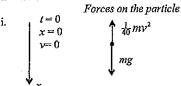


Question 14

a. Outcomes assessed: E5

Marking Guidelines	
Criteria	Marks
i • considers resultant force on the particle and invokes Newton's second law	1 . 1
ii • expresses derivative of t with respect to v as sum of partial fractions	1
• finds t as a function of v by integration, using initial conditions to evaluate the constant	1
iii * rearranges to find v as a function of t in required form	1
iv • rearranges derivative of x with respect to t into a standard form for integration	1
• finds x as a function of t by integration, using initial conditions to evaluate the constant	11

Answer



By Newton's second law:

$$m\ddot{x} = mg - \frac{1}{40}mv^2$$

$$\ddot{x} = \frac{1}{40}(400 - v^2)$$

ii.
$$\frac{dv}{dt} = \frac{1}{40} \left(400 - v^2 \right)$$
iii.
$$e^t = \frac{20 + v}{20 - v}$$
iv.
$$\frac{dx}{dt} = 20 \left(1 - \frac{2e^{-t}}{e^{-t} + 1} \right)$$

$$\frac{dt}{dv} = \frac{40}{20^2 - v^2}$$

$$= \frac{1}{20 + v} + \frac{1}{20 - v}$$

$$t = \ln \left(\frac{20 + v}{20 - v} \right) + c$$
iv.
$$\frac{dx}{dt} = 20 \left(1 - \frac{2e^{-t}}{e^{-t} + 1} \right)$$

$$x = 20 \left\{ t + 2 \ln \left(1 + e^{-t} \right) + c \right\}$$

$$t = 0$$

$$v = 0$$
 when $t = 0 \implies c = 0$

$$\therefore t = \ln\left(\frac{20 + v}{20 - v}\right)$$

O14 (cont)

b. Outcomes assessed: E3, E5

 Marking Guidelines

 i • finds the coordinates of P in terms of a and e 1

 • uses differentiation to find the gradient of the normal at P 1

 • deduces the value of $tan\theta$ in terms of e 1

 ii • writes h in terms of a and e to deduce required expression for PF 1

 iii • resolves forces on P vertically and horizontally, applying Newton's 2^{rd} Law
 1

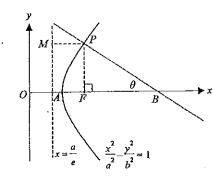
 • finds an expression for $tan\theta$ from the simultaneous equations
 1

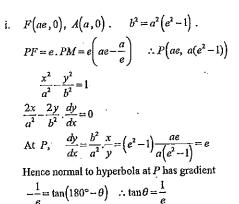
 • uses values of $tan\theta$ and PF from previous parts to obtain required result
 1

 iv • finds $tan\theta$ when the hyperbola is rectangular
 1

 • uses an appropriate trigonometric identity to deduce the required expression for N.
 1

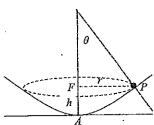
Answer





ii.
$$h = AF = a(e-1)$$
. $\therefore PF = a(e^2-1) = h(e+1)$.

iii.



From i. and ii. : Forces on P
$$r = h(e+1)$$

$$\tan \theta = \frac{1}{e}$$

$$mg$$

Applying Newton's 2rd Law and resolving forces vertically and horizontally:

$$N\cos\theta = mg.$$

$$N\sin\theta = mr\omega^{2}$$

$$\frac{1}{e} = \frac{h(e+1)\omega^{2}}{g} \qquad \therefore \omega^{T} = \frac{g}{he(e+1)}$$

iv.
$$e = \sqrt{2} \implies \tan \theta = \frac{1}{\sqrt{2}}$$
 $\therefore \sec \theta = \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}}$ $\therefore \frac{N}{mg} = \frac{1}{\cos \theta} = \sqrt{\frac{3}{2}}$

4 1

Marking Guidelines	
Criteria	Marks
i • explains why this equation gives the hyperbola parameter value at any intersection point	- 1
• deduces the nature of the roots from the fact that the curves touch at P	v 1
ii • relates sum of products of roots taken two at a time and coefficients to obtain expression for	9 1
• relates product of the roots and coefficients to express ab in terms of c	1
iii • deduces quadrilateral is a parallelogram and finds length of diagonal SS'	1
• finds perpendicular distance from P to SS' in terms of a, b, c	i
finds expression for area of quadrilateral and rearranges into required form	1.

Auswer

i. The hyperbola intersects the ellipse at a point with coordinates $\left(ct,\frac{c}{t}\right)$ when $\frac{c^2t^2}{a^2} + \frac{c^2}{t^2b^2} = 1$.

Rearranging this equation gives $(bc)^2 t^4 - (ab)^2 t^2 + (ca)^2 = 0$.

Since the hyperbola touches the ellipse at P, p must be a double root of this equation. Since P lies in the first quadrant, p > 0. Since the equation is a quadratic in t^2 , -p must also be a double root.

$$ii. \quad p^2 + 4p(-p) + (-p)^2 = \frac{(ab)^2}{(bc)^2}$$

$$\therefore -2p^2 = -\left(\frac{a}{c}\right)^2$$

$$\therefore p > 0 \implies p = \frac{a}{c\sqrt{2}}$$

$$\therefore p > 0 \implies p = \frac{a}{c\sqrt{2}}$$

$$\therefore p^2 \left(-p\right)^2 = \frac{(ca)^2}{(bc)^2}$$

$$\therefore p^4 = \left(\frac{a}{b}\right)^2$$

$$\therefore \left(\frac{a^2}{2c^2}\right)^2 = \left(\frac{a}{b}\right)^2$$

$$\therefore ab = 2c^2$$

- iii. S, S' lie on the line y = x and O is the midpoint of SS'. Since parameter at Q is -p, O is also the midpoint of PQ. Hence the quadrilateral with vertices P, S, Q, S' is a parallelogram (diagonals bisect each other) and the diagonal SS' divides the quadrilateral into two congruent triangles.
 - \therefore Area PSQS' = $2 \times$ Area \triangle PSS'.

Perpendicular distance from $P\left(cp,\frac{c}{p}\right)$ to line y=x is $d=\left|\frac{cp-\frac{c}{p}}{\sqrt{1^2+1^2}}\right|p-\frac{1}{p}$.

$$p - \frac{1}{p} = \frac{a}{c\sqrt{2}} - \frac{c\sqrt{2}}{a}$$

$$= \frac{a^2 - 2c^2}{ac\sqrt{2}}$$
But $a^2 - 2c^2 = a^2 - ab$

$$\Rightarrow d = \frac{c}{\sqrt{2}} \cdot \left| \frac{a(a-b)}{ac\sqrt{2}} \right|$$

$$= \frac{a^2 - 2c^2}{ac\sqrt{2}}$$
and $a > b > 0$

$$= \frac{a-b}{2}$$

$$S(c\sqrt{2}, c\sqrt{2})$$
 :: $SS' = 2 \times SO = 2\sqrt{2c^2 + 2c^2} = 4c$
:: $Area\ PSOS' = d \times SS' = 2c(a-b)$.

Q15 (cont)

b. Outcomes assessed: HE2, E2

Marking Gnidelines		
Criteria		Marks
i • derives $f(x)$ with respect to x		1
• finds the value of $x>0$ for which f takes its minimum value	•	. 1
 finds this minimum value of f and states when it is attained 	,	1
ii • selects appropriate values of x and c to deduce result	•	1 1
iii · defines an appropriate sequence of statements and verifies the first is true) i
• shows that if the k^{th} statement is true, then the $(k+1)^{th}$ is conditionally true	_	. 1
· completes the induction process and states with explanation when equality holds		1 1
iv • selects an appropriate set of positive real numbers to deduce the result		1.

Answer

i.
$$f(x) = \frac{1}{x} \left(\frac{x+c}{n+1}\right)^{n+1}$$
 For $x > 0$, only stationary value is for $nx = c$.

$$f'(x) = \frac{-1}{x^2} \left(\frac{x+c}{n+1}\right)^{n+1} + \frac{1}{x} \left(\frac{x+c}{n+1}\right)^n$$

$$= \frac{1}{x^2} \left(\frac{x+c}{n+1}\right)^n \left(x - \frac{x+c}{n+1}\right)$$

$$= \frac{1}{x^2} \left(\frac{x+c}{n+1}\right)^n \left(\frac{nx-c}{n+1}\right)$$

$$= \frac{1}{x^2} \left(\frac{x+c}{n+1}\right)^n \left(\frac{nx-c}{n+1}\right)$$
with equality if and only if $x = \frac{c}{n}$.

ii. If
$$c = \sum_{i=1}^{n} x_i$$
 and $x = x_{n+1}$, then $x_{n+1} + c = \sum_{i=1}^{n+1} x_i$ and $\frac{1}{x_{n+1}} \left(\frac{1}{n+1} \sum_{i=1}^{n+1} x_i \right)^{n+1} \ge \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^n$. Hence $\left(\frac{1}{n+1} \sum_{i=1}^{n+1} x_i \right)^{n+1} \ge x_{n+1} \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^n$ (with equality if and only if $x_{n+1} = \frac{1}{n} \sum_{i=1}^{n} x_i$).

- iii. Let S(n), n=2,3,... be the sequence of statements defined by
 - $S(n): \frac{1}{n}(x_1+x_2+...+x_n) \ge (x_1x_2...x_n)^{\frac{1}{n}}$ for any set of n positive real numbers x_i , i=1,2,...,n.
 - Consider S(2): $\left\{\frac{1}{2}(x_1 + x_2)\right\}^2 \ge x_2(x_1)^1$ from (ii), hence $\frac{1}{2}(x_1 + x_2) \ge (x_1 x_2)^{\frac{1}{2}}$ and S(2) is true.

If
$$S(k)$$
 is true: $\frac{1}{k}(x_1 + x_2 + ... + x_k) \ge (x_1 x_2 ... x_k)^{\frac{1}{k}} *$

Consider
$$S(k+1)$$
: $\left\{\frac{1}{k+1}(x_1+x_2+...+x_{k+1})\right\}^{k+1} \ge x_{k+1}\left\{\frac{1}{k}(x_1+x_2+...+x_k)\right\}^k$ from (ii) $\ge x_{k+1}(x_1x_2...x_k)$ if $S(k)$ is true using *

giving
$$\frac{1}{k+1}(x_1+x_2+...+x_{k+1}) \ge (x_1x_2...x_{k+1})^{\frac{1}{k+1}}$$

Hence if S(k) is true, then S(k+1) is true. But S(2) is true, then S(3) is true and so on. Hence by mathematical induction, S(n) is true for positive integers $n, n \ge 2$.

The arithmetic mean is equal to the geometric mean if and only if $x_1 = x_2 = ... = x_a$, since result in (ii) requires that $x_2 = x_1$, $x_3 = \frac{1}{2}(x_1 + x_2)$, $x_4 = \frac{1}{3}(x_1 + x_2 + x_3)$, ... in induction process for equality to hold.

iv. Considering the numbers 1, 2, 3, ...,
$$n$$
: $\frac{1}{B}(1+2+3+...+n) > (n!)^{\frac{1}{a}} < \frac{1}{2}(n+1)$.

Question 16

a: Outcomes assessed: E4

Marking Guidelines	
Criteria	Marks
• writes $P(-x)$ in terms of $A(x)$ and $B(x)$ using the definition of an odd function	1 1
• simplifies to successfully apply the test for an even function	1

Answer

$$A(-x) = -A(x)$$
 and $B(-x) = -B(x)$
 $\therefore P(-x) = A(-x)$. $B(-x) = \{-A(x)\}\{-B(x)\} = A(x)$. $B(x) = P(x)$ Hence $P(x)$ is an even function. (Clearly the product of two polynomial functions is also a polynomial function)

b. Outcomes assessed: E2

Marking Guidelines			
Criteria		M	larks
• applies alternate segment theorem to deduce EF and BC are parallel	•		1
 deduces equality of angles DEF and BDE 	•	•	1
 deduces equality of angles DEF and DAF 			1
deduces equality of angles BDE and DAE		•	1

Ánswer

Construct EF and ED.

Applying the alternate segment theorem in circles ABC and AEF:

 $\angle ABC = \angle NAC = \angle AEF$

:. EF || BC (equal corresp. L's on transversal AB)

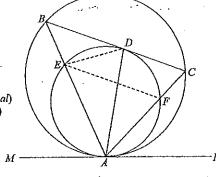
 \therefore \(\angle DEF = \angle BDE\) (Alt. \(\angle 's\) within parallel lines are equal)

\(\subseteq DEF = \subseteq DAF \) (\(L'\)'s subtended by same arc DF at circumference of circle AEF are equal)

 $\angle BDE = \angle DAE$ (Alt. segment theorem in circle AEF)

 $\therefore \angle DAF = \angle DAE$

Hence AD bisects ZBAC



c. Outcomes assessed: E2

Marking Guidennes	
Criteria	Marks
i • uses index laws and positive indices $a-b$, $b-c$ to deduce $a^{*-b}b^{b-c}>c^{a-c}$	1
rearranges or uses further index laws to produce required inequality	1
ii • applies the increasing function ln(x) to both sides, preserving the direction of the inequality	
• uses log laws to complete the proof	<u> </u>

ومسؤلم التؤسيل سياكس

Answer

i.
$$a^{a-b}b^{b-c} > c^{a-b}c^{b-c} = c^{a-c}$$
, since $a > b > c > 1$

$$\therefore \qquad a^{a-b}b^{b-c} > c^{a-c}$$

$$\left(a^bb^cc^c\right)a^{a-b}b^{b-c} > \left(a^bb^cc^c\right)c^{a-c}$$

$$a^ab^bc^c > a^bb^cc^a$$

ii. Since $f(x) = \ln x$ is monotonic increasing, $\ln(a^a b^b c^c) > \ln(a^b b^c c^a)$

 $\ln a^a + \ln b^b + \ln c^c > \ln a^b + \ln b^c + \ln c^a$ $\therefore a \ln a + b \ln b + c \ln c > b \ln a + c \ln b + a \ln c$

Q16 (cont)

d. Outcomes assessed: E3

Marking Guidelines	
. Criteria	Marks
i • factorises $z^n - 1$, then uses the sum of n terms of a GP to deduce the required result ::	1 1
• recognises PP_k as $ 1-\omega^k $ then evaluates the product using the sum of powers of 1	1
ii • shows $PP_k^2 = 2 - 2 \operatorname{Re}(\omega^k)$	1
• rearranges expression for the sum of squares using properties of Re(z)	1
• uses relationship between sum of the roots and coefficients of $z''-1=0$ to complete the proof	1

Answer

i.
$$(z-1)(z-\omega)(z-\omega^{2})...(z-\omega^{n-1}) = z^{n}-1$$

$$(z-\omega)(z-\omega^{2})...(z-\omega^{n-1}) = \frac{z^{n}-1}{z-1}$$

$$= |1-\omega|.|1-\omega^{n}|$$

$$= |1-\omega|.|1-\omega^{n-1}|$$
But $1+z+z^{2}+...+z^{n-1} = \frac{z^{n}-1}{z-1}$

$$\therefore (z-\omega)(z-\omega^{2})...(z-\omega^{n-1}) = 1+z+z^{2}+...+z^{n-1}$$

$$= |1-\omega|.|1-\omega^{n}|$$

$$= |(1-\omega)(1-\omega^{2})...(1-\omega^{n-1})|$$

$$= 1+1+1^{2}+...+1^{n-1}$$

$$= n$$

$PP_k^2 = \left 1 - \omega^k\right ^2$
$=(1-\omega^k)\overline{(1-\omega^k)}$
$= (1 - \omega^k) (1 - \overline{\omega^k})$
$=1+\omega^{k}\overrightarrow{\omega^{k}}-\left(\omega^{k}+\overrightarrow{\omega^{k}}\right)$
$=1+\left \omega^{k}\right ^{2}-2\operatorname{Re}\left(\omega^{k}\right)$
$=2-2\operatorname{Re}(\omega^{k})$

$$\begin{aligned} PP_{1}^{2} + PP_{2}^{2} + \dots + PP_{s-1}^{2} &= 2\left\{\sum_{i=1}^{s-1} (i - \text{Re}(\omega^{i}))\right\} \\ &= 2\left\{(n-1) - \sum_{i=1}^{s-1} \text{Re}(\omega^{i})\right\} \\ &= 2\left\{n - \text{Re}(1 + \omega + \omega^{2} + \dots + \omega^{s-1})\right\} \\ &= 2\left\{n - \text{Re}(0)\right\} \\ &= 2n \end{aligned}$$