NSW INDEPENDENT SCHOOLS

2015 Higher School Certificate Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A table of standard integrals is provided at the back of the paper
- All necessary working should be shown in Question 11-16
- Write your student number and/or name at the top of every page

Total marks - 100

Section I - Pages 2 - 5

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Section II - Pages 6-11

90 marks

Attempt Questions 11 - 16

Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{x+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Marks

, •

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

- 1 What is the value of $8e^{-2}$ correct to 3 significant figures?
- (A) 1.08
- (B) 1.082
- (C) 1·083
- (D) 1·10
- 2 What is the focus of the parabola $x^2 = 12(y+3)$?
 - (A) (0,-3)
 - (B) (0,0)
 - (C) (0,3)
 - (D) (0,12)
- 3 Which expression is a simplification of $\frac{\sin(\pi-x)}{\sin(\frac{\pi}{2}-x)}$
 - (A) $\frac{-\sin x}{1-\sin x}$
 - (B) $-\tan x$
 - (C) tan x
 - (D) $\frac{2(\pi-x)}{\pi-2x}$

4 Which of the following is NOT an even function?

- $(A) \qquad f(x) = (x-2)^2$
- (B) f(x) = |x|
- $(C) \cdot f(x) = \cos x$
- (D) $f(x) = e^x + e^{-x}$

5 What is the radius of the circle $x^2 + y^2 - 4x + 8y + 11 = 0$?

1

- (A)
- (B)
- (C) 4
- (D)

6 The diagram shows the region bounded by x-y+1=0 and $y=x^2-1$.

1

Which of the following pairs of inequalities describes the shaded region in the diagram?

- (A) $x-y+1\geq 0$ and $y\geq x^2-1$
- (B) $x-y+1 \ge 0$ and $y \le x^2-1$
- (C) $x-y+1 \le 0^{-} \text{ and } y \ge x^2=1^{-}$
- (D) $x-y+1 \le 0 \text{ and } y \le x^2-1$

Student name / number _____

Marks

7 What is the value of $\lim_{x\to 2} \frac{x^3-8}{x-2}$

- 1

- (A) 0
- (B) 4
- (C) 8
- (D) 12

8 What is the domain of the function $f(x) = \log_a x + \log_a (x-2)$?

1

1

- (A) x > 0
- (B) 0 < x < 2
- (C) x > 2
- (D) all real x

9 What is the value of $\int \frac{\sin x}{\cos x} dx$?

- (A) $\sec^2 x + C$
- (B) $\frac{1}{2}\tan^2 x + C$
- (C) $\log_{x} \cos x + C$
- (D) $\log_a \sec x + C$
- 10 A water tank holds 800 litres of water. Water is let out of the tank at a rate of R litres per minute where R = 100t after t minutes. How long does it take the tank to empty?
 - (A) 2 minutes
 - (B) 4 minutes
 - (C) 6 minutes
 - (D) 8 minutes

Student name / number	·
-----------------------	---

Marks

2

3

Section II

90 Marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section.

Answer the questions in writing booklets provided. Use a separate writing booklet for each question. In Questions 11-16 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a separate writing booklet.

- (a) Find the sum of the multiples of 6 between 1 and 400.
 - Differentiate $(3-x)^4$ with respect to x.
- (c) Differentiate $\frac{\cos x}{r^2}$ with respect to x.
- (d) Find the equation of the tangent to the curve $y = \log_{\epsilon}(2x-1)$ at the point (1,0).
- (e) Evaluate $\int_{1}^{3} \left(x^{2} + \frac{x}{2}\right) dx$.
- (f) The region bounded by the curve $y=2-\sqrt{x}$ and the y axis between y=0 and y=2 is rotated about the y axis to form a solid. Find the volume of the solid in simplest exact form.

Question 13 (15 marks)

Use a separate writing booklet.

The diagram shows the graph of the parabola $y=x^2-2x$ and the line y=2-x. The graphs intersect at the points (2,0) and A. The region bounded by the parabola and the line is shaded.

- Find the coordinates of A.
- (ii) Find the area of the shaded region.
- Blaise rolls a fair die repeatedly until he first rolls a 5 or a 6.
- (i) Find as a fraction in its simplest terms the probability that Blaise rolls the die
- (ii) Find as a fraction in its simplest terms the probability that Blaise rolls the die fewer than 8 times.
- The gradient function of a curve y = f(x) is given by $f'(x) = 4 + \frac{1}{x^2}$. The curve passes through the point (1,2). Find the equation of the curve.
- Use Simpson's Rule with 3 function values to obtain the approximation $\int_{1}^{\infty} \left(\frac{x-1}{6} \right) \log_{e} x \, dx = \log_{e} 112.$

(iii) Find the area of the quadrilateral OCEB.

- (ii) Find the coordinates of the point E.
- (i) Show that the lines are perpendicular to each other.

points C and D respectively. E is the point of intersection of the two lines. st the points A and B respectively. The line 2x-y=3 meets the x and y axes at the The diagram shows a quadrilateral OCEB. The line x+2y=9 meets the x and y axes

- Find the set of values of x for which the function $f(x) = xe^{-x}$ is both decreasing and
- red ball from bag B. chooses one ball at random from the 6 balls in bag B. Find the probability he chooses a Pierre chooses one ball at random from the 7 balls in bag A and puts it in bag B. He then
- Bag A contains 4 blue balls and 3 red balls. Bag B contains 2 blue balls and 3 red balls.
 - Find $\int e^x (e^x + 1) dx$.

Use a separate writing booklet.

Question 12 (15 marks)

Marks

Student name / number

Marks

Question 14 (15 marks)

Use a separate writing booklet.

(a) In the diagram ABCD is a rectangle. E is the point on DC, where DE > CE, such that AE and BE are perpendicular to each other.

(i) Show $\triangle AED \parallel \triangle EBC$.

3

(ii) If AB = 8 cm and BC = 3 cm, find the length of DE in simplest exact form.

3

- (b) A particle is moving in a straight line. At time t seconds its displacement is x metres from a fixed point O on the line and its velocity v ms⁻¹ is given by $v = 3t^2 2t 1$. Initially the particle is 1 metre to the right of O.
 - (i) Show that the particle is at rest after 1 second.

1

(ii) Find the displacement x in terms of t.

- 2
- (iii) Find the distance travelled by the particle in the first 2 seconds of its motion.
- 2
- (c) Initially there are 1200 individuals in a population. After t years there are N(t) individuals in the population where $N(t) = 1200 e^{kt}$ for some constant k > 0. After 18 years there 3000 individuals in the population.
 - (i) Show that $k \approx 0.0509$ correct to 4 decimal places.

Ţ

(ii) Find in years and months, correct to the nearest month, the time taken for the number of individuals to increase from 1200 to 2400.

Use a separate writing booklet.

In the diagram the sector has radius r cm and contains an angle θ radians. The area of the sector is 100 cm^2 .

(i) Show that the perimeter P cm of the sector is given by $P = 2r + \frac{200}{r}$.

. -

(ii) If r and θ vary in such a way that the area of the sector remains constant at $100 \,\mathrm{cm}^2$, find the values of r and θ which give the least value of P.

The tangent to the curve $y = \sqrt{x-4}$ at the point $P(x_1, y_1)$ passes through the

3

origin O(0,0). By considering the gradient of OP in two different ways, find the value of x_i .

Question 15 (15 marks)

(c)(i) Solve the equation $1-2\cos x=0$ for $0 \le x \le 2\pi$.

2

(ii) Sketch the graph of the curve $y=1-2\cos x$ for $0 \le x \le 2\pi$ —showing clearly———the coordinates of the endpoints and the maximum turning point.

3

(iii) Find in simplest exact form the area of the region bounded by the curve $y=1-2\cos x$ and the x axis between x=0 and $x=\pi$.

Question 16 (15 marks)

Use a separate writing booklet.

- (a) Ozzie takes out a loan of \$400 000. The loan is to be repaid in equal monthly repayments of \$3600. Reducible interest is charged at 6% p.a. calculated monthly. Let A_n be the amount owing after the n^{th} repayment.
- (i) Show that $A_3 = 400\,000 (1.005)^3 3600 (1+1.005+1.005^2)$.

. 2

(ii) Find correct to the nearest month the time taken for Ozzie to repay the loan.

4

(b) In the diagram the circle with centre (1,1) and radius 1 touches both the x and y axes.

- (i) Show that the line 3x+4y-12=0 is tangent to the circle.
- (ii) Find the radius r of the other circle with centre in the first quadrant that also touches both the x and y axes and for which the line 3x+4y-12=0 is also a tangent to the circle.
- (c) In the diagram O is the centre of a circle with radius r. A₁A₂ is one side of a regular n-sided polygon which lies inside the circle so that the vertices of the polygon lie on the circle. B₁B₂ is one side of a regular n-sided polygon which lies outside the circle so that the sides of the polygon touch the circle. M is the point of contact of B₁B₂ with the circle. The line OM cuts A₁A₂ at the point N, and OM is perpendicular to both A₁A₂ and B₁B₂.

- (i) Show that $Area \Delta OA_1A_2 = r^2 \sin(\frac{\pi}{n})\cos(\frac{\pi}{n})$. Find a similar expression for $Area \Delta OB_1B_2$.
- (ii) Hence show $\frac{Area of outside polygon}{Area of inside polygon} = \sec^2(\frac{\pi}{n}).$

Independent Trial HSC 2015

Mathematics

Marking Guidelines

Section 1 Questions 1-10 (1 mark each)

Question	Answer	Solution	Ontcomes
1.	A	$8e^{-2} \approx 1.08268 \approx 1.08$ (to 3 significant figures)	P3
2.	В	Parabola $x^2 = 12(y+3)$ has vertex $(0,-3)$ and focal length 3. Focus is $(0,0)$	P4
3.	C.	$\frac{\sin(\pi - x)}{\sin(\frac{x}{2} - x)} = \frac{\sin x}{\cos x} = \tan x$	P3
4.	A	For $f(x)=(x-2)^2$, $f(-1)=9$ and $f(1)=1$. $\therefore f(-1)\neq f(1)$	P5
5.	В	$x^2+y^2-4x+8y+11=0 \Rightarrow (x-2)^2+(y+4)^2=9$. Circle has radius 3.	P4
6.	A	(0, 0) lies in the region and satisfies both $x-y+1\ge 0$ and $y\ge x^2-1$	P5
7.	D	$\lim_{x\to 2} \frac{x^3 - 8}{x - 2} = \lim_{x\to 1} (x^2 + 2x + 4) = 12$	Н5
8.	C	Domain is $x>0$ and $x>2$, giving $x>2$	НЗ
9.	D	$\int \frac{\sin x}{\cos x} dx = -\log_e \cos x = \log_e \left(\frac{1}{\cos x}\right) = \log_e \sec x$	Н5
10.	В	Amount of water let out in t minutes is V litres where $V = 50t^2 + c$, for some constant c . Initially $V = 0$ $c = 0$ and $V = 50t^2$. Tank is empty when 800L has been let out. $800 = 50t^2$ gives $t^2 = 16$ $t = 4$	Н8

Section II

Question 11

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
• identifies the sum as an arithmetic series with first term 6 and last term 396	1
• finds the number of terms in the series	1
• calculates the sum	1

Answer

 $400=6\times66+4$ $\therefore 6+12+18+...+396=S_{65}$ for an AP with common difference 6.

∴6+12+18+...+396=33(6+396)=13266

b. Outcomes assessed: P6

Marking Guidelines	
Criferia	Marks
• uses the chain rule to differentiate the expression	1

Answer

$$\frac{d}{dx}(3-x)^4 = -4(3-x)^3$$

Q11 (cont)

c. Outcomes assessed: H5

•	Marking Guidelines	
	Criteria	Marks
applies the quotient rule		1 1
· simplifies the derivative		

Answer

$$\frac{d}{dx} \left(\frac{\cos x}{x^2} \right) = \frac{-\sin x \cdot x^2 - \cos x \cdot 2x}{x^4} = \frac{-x \left(x \sin x + 2 \cos x \right)}{x^4} = \frac{-\left(x \sin x + 2 \cos x \right)}{x^3}$$

d. Outcomes assessed: H5

	Marking Guidelines	
	Criteria	Marks
finds the derivative		1
		1 1
 finds the gradient of the tangent 		1 1
· finds the equation of the tangent		

Answer

$$y = \log_{\epsilon}(2x-1)$$
 $\therefore \frac{dy}{dx} = \frac{2}{2x-1} = 2$ when $x=1$. Hence tangent at $(1,0)$ has gradient 2 and equation $y=2x-2$.

e. Outcomes assessed: H5

Mar	king Guidelines	
	Criteria ,	Marks
C. L. d		1
finds the primitive function		1 1
· substitutes to obtain a numerical expression-		1 7
• evaluates	·	

Answer

$$\int_{-1}^{3} \left(x^{2} + \frac{x}{2} \right) dx = \left[\frac{1}{3}x^{3} + \frac{1}{4}x^{2} \right]_{-1}^{3} = \frac{1}{3} \left\{ 3^{3} - (-1)^{3} \right\} + \frac{1}{4} \left\{ 3^{2} - (-1)^{2} \right\} = \frac{28}{3} + \frac{8}{4} = 11\frac{1}{3}$$

f. Outcomes assessed: H8

	Marking Guidelines	
	Criteria	 Marks
• expresses the volume as a definite integ	ral in terms of y	1
• finds the primitive function	·	1
• evaluates the definite integral as require	ed	 <u>j 1</u>

Answer

$$V = \int_0^2 \pi x^2 dy = \int_0^2 \pi (2 - y)^4 dy = -\frac{\pi}{5} \left[(2 - y)^5 \right]_0^2 = -\frac{\pi}{5} \left[(2 -$$

Question 12

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
• expands the integrand or recognises the pattern $f'.f''$	1
writes the primitive function	l

Answer

$$\int e^{x} (e^{x} + 1) dx = \int (e^{2x} + e^{x}) dx = \frac{1}{2} e^{2x} + e^{x} + c \quad \text{or} \quad \int e^{x} (e^{x} + 1) dx = \frac{1}{2} (e^{x} + 1)^{2} + c$$

b. Outcomes assessed: H5

Marking Guidelines

Marking Outdenies	
Criteria	Marks
• finds an expression for the probability of selecting a red from A then a red from B	1
• finds an expression for the probability of selecting a blue from A then a red from B	1
adds and simplifies to obtain the required probability	1

Answer

$$P(\text{red from } A \text{ then } a \text{ red from } B) = \frac{3}{7} \times \frac{4}{6}$$

$$P(\text{blue from } A \text{ then } a \text{ red from } B) = \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} = \frac{4}{7}$$

$$\therefore P(a \text{ red from } B) = \frac{3}{7} \times \frac{4}{6} + \frac{4}{7} \times \frac{3}{6} = \frac{4}{7}$$

c, Outcomes assessed: H6

Marking Guidelines	·
Criteria	Marks
applies the product rule to find the first derivative	1
• finds the second derivative	1
deduces the set of values for x	1

Answer

$$f(x) = xe^{-x} \qquad f'(x) = 1 \cdot e^{-x} + x \cdot (-e^{-x}) = (1-x)e^{-x} \qquad \therefore f'(x) < 0 \text{ for } x > 1$$
$$f''(x) = -e^{-x} - (1-x)e^{-x} = (x-2)e^{-x} \qquad \therefore f''(x) < 0 \text{ for } x < 2$$

Hence function is decreasing and concave down for 1 < x < 2

O12 (cont)

d. Outcomes assessed: P4, H5

Marking Guidelines	
Criteria	Marks
 i • finds the gradients of both lines • verifies that the product of the gradients is -1 ii • solves simultaneous equations to find one coordinate of E 	1 1 1
 finds the second coordinate of E finds the coordinates of at least two of the points A, B, C, D writes an expression for the required area in terms of the area of two simpler figures calculates the required area 	1 1 1

Answer

- i. Line x+2y=9 has gradient/intercept form $y=-\frac{1}{2}x+\frac{9}{2}$ and gradient $-\frac{1}{2}$. Line 2x-y=3 has gradient/intercept form y=2x-3 and gradient 2. Since $-\frac{1}{2}\times 2=-1$, the lines are perpendicular.

Question 13

a. Outcomes assessed: P4, H8

Marking Guidelines	
Criteria	Marks
i • solves the equations of line and parabola simultaneously to find the coordinates of A	1
ii • finds an expression for the area as a definite integral	1
• finds the primitive function	1
• evaluates to find the area	11

Answer

i. At A,
$$y=x^2-2x \ \Rightarrow x^2-2x=2-x \ y=2-x \ \Rightarrow x^2-x-2=0 \ \text{But } x\neq 2 \ \therefore \ x=-1 \ y=3 \ \$$
 Hence $A(-1,3)$.

ii. Shaded area is given by
$$\int_{-1}^{2} \left\{ (2-x) - (x^2 - 2x) \right\} dx = \int_{-1}^{2} \left(2 + x - x^2 \right) dx$$
where
$$\int_{-1}^{2} \left(2 + x - x^2 \right) dx = \left[2x + \frac{1}{2}x^2 - \frac{1}{3}x^3 \right]_{-1}^{2} = 2\left\{ 2 - (-1) \right\} + \frac{1}{2}(4 - 1) - \frac{1}{3}\left\{ 8 - (-1) \right\} = 4\frac{1}{2}$$
Hence shaded area is $4\frac{1}{2}$ sq.units

.

Q13 (cont)

b. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • finds the probabilities of the events 'rolls 5 or 6' and its complement	1
calculates the required probability	1
ii • interprets 'fewer than 8 rolls' as complement of 'no 5's or 6's on first 7 rolls'	1
writes a numerical expression for this probability	1
evaluates this probability as required	1

Answer

- i. On each roll, $P(rolls \ 5 \ or \ 6) = \frac{2}{6} = \frac{1}{3}$. Hence $P(does \ not \ roll \ 5 \ or \ 6) = \frac{2}{3}$. $P(Blaise \ rolls \ exactly \ 8 \ times) = (\frac{2}{3})^7 (\frac{1}{3}) = \frac{128}{6561}$
- ii. $P(fewer than 8 rolls) = 1 P(no 5's or 6's on first 7 rolls) = 1 (\frac{2}{3})^7 = \frac{2059}{2187}$

c. Outcomes assessed: H5

Marking Guidelines

41.	Tarting Carachac	~		
	Criteria			Marks
• finds primitive function with constant c				1
• uses given coordinates to evaluate c	•	•	•	1.
writes the equation of the curve				1

Answer

$$f'(x) = 4 + x^{-2}$$
 $\therefore f(x) = 4x - x^{-1} + c$. But $f(1) = 2 \implies 4 - 1 + c = 2$ $\therefore c = -1$
Hence curve has equation $y = 4x - \frac{1}{2} - 1$

d. Outcomes assessed: H3

Marking Guidelines

Marking Guidennes	
. Criteria	Marks
• finds the three function values	1
 applies Simpson's rule to find an expression for the definite integral 	1
applies appropriate logarithm laws to simplify this approximation	1

Answer

			,	
х.	1 _ 1	4	7	<i>h</i> = 3
f	0	$\frac{1}{2}\log_{4}4$	log _e 7	$f(x) = \frac{1}{6}(x-1)\log_{a}x$
multiplier	×1	×4	×1	

$$\int_{1}^{1} f(x) dx = \frac{3}{3} \left\{ 0 + 2\log_{e} 4 + \log_{e} 7 \right\} = \log_{e} \left(4^{2} \times 7 \right) = \log_{e} 112 \dots$$

Question 14

a. Outcomes assessed: P4, H2, H5

Marking Guidelines	
Criteria .	Marks
i • notes the equal right angles at D and C, quoting the appropriate rectangle property	1
• explains why ∠AED and ∠BEC are complementary	1
deduces the second pair of equal angles and completes the proof	1
ii • uses sides in proportion to write a quadratic equation for DE	1
• completes the square or uses the quadratic formula	1
chooses the correct root and gives simplest exact form	1

Answer

i. In ΔAED, ΔEBC

$$\angle ADE = \angle ECB = 90^{\circ}$$
 (Vertex angles of rectangle ABCD are 90°)
Also $\angle AED + \angle BEC = 90^{\circ}$ (straight angle DEC is 180°)

$$\therefore \angle AED = \angle EBC$$

Then
$$\angle EAD = \angle BEC$$
 (\angle sum of each \triangle is 180°)
:. $\triangle AED \parallel \triangle EBC$ (equiangular)

ii.
$$\frac{DE}{CB} = \frac{AD}{EC}$$
 (sides of similar triangles are in proportion)

$$\frac{DE}{3} = \frac{3}{8 - DE}$$
 (opposite sides of a rectangle are equal)

$$DE(8-DE)=9$$
 Hence $4 < DE < 8$ is a root of the equation $x^2-8x=-9$

$$\therefore DE = \left(4 + \sqrt{7}\right) \text{cm}$$

Q14 (cont)

b. Outcomes assessed: P4, H5, H9

Marking Guidelines	
Criteria	Marks
i • shows $v=0$ when $t=1$	1
ii • finds an expression for x by integration	1
 uses the initial conditions to evaluate the constant of integration 	1
iii • finds the position of the particle when it changes its direction of travel	1
• uses the path of travel to find the distance over the first two seconds	1

Answer

- i. $t=1 \Rightarrow y=3t^2-2t-1=3-2-1=0$. Hence particle is at rest after 1 second.
- ii. $x=t^3-t^2-t+c$, and x=1 when $t=0 \implies c=1$ $\therefore x=t^3-t^2-t+1$
- iii. v = (3t+1)(t-1) $\therefore v < 0$ for $0 \le t < 1$, and v > 0 for t > 1. Hence particle changes direction at t=1 where x=1-1-1+1=0. When t=2, x=8-4-2+1=3. Particle starts at x=1, travels left to x=0, then right to x=3. Distance travelled is 4 metres.

· c. Outcomes assessed: H4, H5

Marking Guidelines	
Criteria	Marks
i • substitutes and evaluates k.	1
ii • evaluates kt	1
• evaluates t	1
• interprets the answer to give the time in years and months	1

Answer

i.
$$N(t) = 1200e^{kt}$$
. $N(18) = 3000 \Rightarrow 3000 = 1200e^{18k}$ $\therefore e^{18k} = \frac{5}{2}$

$$18k = \ln \frac{5}{2}$$

$$k = (\ln \frac{5}{2}) + 18 \approx 0.0509$$

ii.
$$N(t) = 2400 \Rightarrow 2400 = 1200e^{kt}$$
 $\therefore e^{kt} = 2$ $kt = \ln 2$ $\therefore t = \ln 2 + k \approx 13.61647...$

Time taken is 13 years and 7 months (to the nearest month).

Question 15 .

a. Outcomes assessed: H5

Marking Guidelines	
Criteria	Marks
i • uses the formula for area of a sector to obtain the relationship between r and θ .	1
• uses this relationship to express P in terms of r alone.	1
ii • derives P with respect to r and deduces a stationary value at $r=10$	1
• checks this stationary value is a minimum	1 1
• finds the corresponding value of θ	

Answer

i.
$$A = \frac{1}{2}r^2\theta \Rightarrow r^2\theta = 200$$
 $\therefore r\theta = \frac{200}{r}$ $\therefore P = 2r + r\theta = 2r + \frac{200}{r}$
ii. $\frac{dP}{dr} = 2 - \frac{200}{r^2}$ $\therefore \frac{dP}{dr} = 0$ for $r = 10$, where $\frac{d^2P}{dr^2} = \frac{400}{r^3} > 0$. \therefore Minimum P for $\begin{cases} r = 10 \\ \theta = 2 \end{cases}$

b. Outcomes assessed: P4, P6

M	arking Guidelines	
	Criteria	Marks
 uses differentiation to find the gradient at P finds the gradient of OP from the coordinate 	es of P then expresses this in terms of x_1 alone	1 1
• writes and solves an equation for x_1		1

Answer

$$y = (x-4)^{2}$$
Hence gradient of the tangent at $P(x_{1}, y_{1})$ is $\frac{1}{2\sqrt{x_{1}-4}}$.

Also gradient of OP is $\frac{y_{1}}{x_{1}} = \frac{\sqrt{x_{1}-4}}{x_{1}}$.

$$\therefore \frac{1}{2\sqrt{x_{1}-4}} = \frac{\sqrt{x_{1}-4}}{x_{1}}$$

$$\therefore x_{1} = 2(x_{1}-4) \text{ and } x_{1} > 4$$

$$x_{1} = 8$$

Q15 (cont)

c. Outcomes assessed: H5, H8

Marking Guidelines	
Criteria	Marks
i • finds one solution	1
• finds the second solution	1
ii • sketches curve with correct shape and intercepts on the coordinate axes	1
 shows coordinates of maximum turning point and right-hand endpoint 	- 1
iii • expresses the area in terms of definite integrals	1
finds the primitive function	1
evaluates exact area	1 1

Answer

i. $1-2\cos x=0, \quad 0 \le x \le 2\pi$

osx=½ x=₹, §₹

iii. Area is A sq.units where

$$A = -\int_{0}^{\frac{\pi}{3}} (1 - 2\cos x) dx + \int_{\frac{\pi}{3}}^{\pi} (1 - 2\cos x) dx$$

$$= -\left[x - 2\sin x\right]_{0}^{\frac{\pi}{3}} + \left[x - 2\sin x\right]_{\frac{\pi}{3}}^{\pi}$$

$$= -\left(\frac{x}{3} - 2\frac{\sqrt{3}}{2}\right) + \left\{\left(\pi - \frac{\pi}{3}\right) - 2\left(0 - \frac{\sqrt{3}}{2}\right)\right\}$$

$$= \frac{x}{3} + 2\sqrt{3}$$

Question 16

a. Outcomes assessed: H1, H2, H4, H5

Marking Guidelines	
Criteria	Marks
i • writes expression for A ₁ , then for A ₂	1
• writes expression for A_3 in terms of A_2 , then as required	1
ii • generalises to obtain expression for A_n	1
• sums the geometric progression and simplifies the resulting expression for A.	1
solves $A_n = 0$ for n	I
• interprets this result to give time to repay loan, remembering to round up to next whole month	1

Answer

i. Monthly interest rate is
$$0.5\%$$
. $A_1 = P(1.005) - 3600 = 400\,000(1.005) - 3600$

$$A_2 = A_1(1.005) - 3600 = 400\,000(1.005)^2 = 3600(1 \pm 1.005) \dots$$

$$A_3 = A_3(1.005) - 3600 = 400\,000(1.005)^3 - 3600(1 \pm 1.005 \pm 1.005)^2$$

Q16 a (cont)

ii. Generalising this result,
$$A_n = 400\ 000 \left(1 \cdot 005\right)^n - 3600 \left(1 + 1 \cdot 005 + 1 \cdot 005^2 + \dots + 1 \cdot 005^{n-1}\right)$$

$$A_n = 400\ 000 \left(1 \cdot 005\right)^n - 3600 \left(\frac{1 \cdot 005^n - 1}{1 \cdot 005 - 1}\right)$$

$$= 400\ 000 \left(1 \cdot 005\right)^n - 720\ 000 \left(1 \cdot 005^n - 1\right)$$

$$= 720\ 000 - 320\ 000 \left(1 \cdot 005\right)^n$$

$$A_n = 0 \implies 320\ 000 \left(1 \cdot 005\right)^n = 720\ 000$$

$$\left(1 \cdot 005\right)^n = \frac{9}{4}$$

$$n \log_a 1 \cdot 005 = \log_a \frac{9}{4}$$

$$\therefore n = \log_a \frac{9}{4} + \log_a 1 \cdot 005 \approx 162 \cdot 59117...$$

Hence loan is repaid after 13 years and 7 months

b. Outcomes assessed: H5

Marking Guidelines			
Criterla		Marks	l
i • finds the perpendicular distance from the circle centre to the line	*	1	ľ
• compares this distance with the radius of the circle to deduce the result		1 .	ł
ii • expresses the perpendicular distance from the centre of the circle to the line in terms of r		1	l
• writes and solves an equation for r		11	

Answer

i. Perpendicular distance from (1,1) to the line 3x+4y-12=0 is $\frac{|3+4-12|}{\sqrt{3^2+4^2}} = \frac{|-5|}{5} = 1$

Since this distance is equal to the radius of the circle, the line must be tangent to the circle.

ii. Since the second circle touches both the x and y axes, its centre must have coordinates (r, r) where r is the radius of the circle.

The perpendicular distance d from (r, r) to 3x+4y-12=0 is given by $d=\frac{|3r+4r-12|}{\sqrt{3^2+4^2}}=\frac{|7r-12|}{5}$.

The line is tangent to the circle if d=r. $\therefore |7r-12|=5r$ $\therefore 7r-12=5r$ or 7r-12=-5r 2r=12 12r=12r=6 r=1

Hence the radius of the second circle is 6.

16 (cont)

c. Outcomes assessed: H5

Marking Guidelines			
Criteria	Marks		
i • uses symmetry to deduce the size of angle A_1ON and hence the lengths of ON and A_1A_2	1		
• deduces the required area of triangle OA_1A_2	1		
• finds an expression for B_1B_2 and hence for the area of triangle OB_1B_2	1		
ii • writes the required ratio using the expressions from i.	1		
• simplifies using appropriate trigonometric identities	1		

Answer

- i. $\angle B_1OB_2 = \angle A_1OA_2 = \frac{2\pi}{n}$ and OM is an axis of symmetry for both isosceles triangles OA_1A_2 and OB_1B_2 . $\therefore \angle A_1ON = \frac{\pi}{n}$ and in right-angled $\triangle A_1ON$, $ON = r\cos\frac{\pi}{n}$ and $A_1A_2 = 2A_1N = 2r\sin\frac{\pi}{n}$. Hence $Area\ \Delta OA_1A_2 = \frac{1}{2} \times A_1A_2 \times ON = r^2\sin\frac{\pi}{n}\cos\frac{\pi}{n}$. In $\triangle OB_1B_2$, OM = r and $\frac{1}{2}B_1B_2 = MB_1 = r\tan\frac{\pi}{n}$. Hence $Area\ \Delta OB_1B_2 = \frac{1}{2} \times B_1B_2 \times OM = r^2\tan\frac{\pi}{n}$.
- ii. $\frac{Area\ of\ outside\ polygon}{Area\ of\ inside\ polygon} = \frac{n \times Area\ \Delta OB_1B_2}{n \times Area\ \Delta OA_1A_2} = \frac{nr^2\tan\frac{\pi}{n}}{nr^2\sin\frac{\pi}{n}\cos\frac{\pi}{n}} = \frac{\sin\frac{\pi}{n}}{\sin\frac{\pi}{n}\cos^2\frac{\pi}{n}} = \frac{1}{\cos^2\frac{\pi}{n}} = \sec^2\left(\frac{\pi}{n}\right)$