SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 HSC COURSE

Extension 1 Mathematics

Assessment 3
June 2013

TIME ALLOWED: 70 minutes

Instructions:

- Start each question on a new page.
- Write your name and class at the top of this page, and on all your answer sheets.
- Hand in your answers attached to the rear of this question sheet.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- · Marks indicated within each question are a guide only and may be varied at the time of marking
- It is suggested that you spend no more than 5 minutes on Part A.
- Approved calculators may be used.

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \quad \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

PART A: (5 Marks)

Answers to these multiple choice should be completed on the multiple choice answer sheet supplied with your answer booklet.

All questions are worth 1 mark

1	$\frac{d}{dx}\ln(\frac{x+1}{2-x}) =$	<u> </u>	
	A. $\frac{3}{(x+1)(2-x)}$		
	B. $\frac{1-2x}{(x+1)(2-x)}$		
	C. $\frac{1-x}{(x+1)(2-x)}$		
	D. $\frac{2x-1}{(x+1)(2-x)}$		
2	An indefinite integral of $\frac{1}{2}(e^x + e^{-x})$ is:		
	$\int A. \frac{1}{2}(e^x + e^{-x})$ B. $-\frac{1}{2}(e^x + e^{-x})$	$\vec{Q}.\frac{1}{2}(e^x-e^{-x})$	D. $-\frac{1}{2}(e^x - e^{-x})$
3	The indefinite integral of $\frac{1}{\sqrt{9-x^2}}$ is:		
	A. $\frac{1}{3}sin^{-1}\frac{x}{3} + k$ B. $sin^{-1}\frac{x}{3} + k$	C. $3\sin^{-1}\frac{x}{3} + k$	D. $\frac{1}{3}sin^{-1}3x + k$
4	The value of $sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is:		
	A. $\frac{\pi}{3}$ B. $\frac{\pi}{6}$	C. $-\frac{\pi}{6}$	\sqrt{D} . $-\frac{\pi}{3}$
5	The curve $y = \frac{1}{\sqrt{16+x^2}}$ between the lines $x = 0$	0 and $x = 4$ is rotated about	out the x-axis.
	Its volume is given by:		
	A. $\frac{\pi}{16}$ B. $\frac{\pi}{4}$	C. $\frac{\pi^2}{16}$	D. $\frac{\pi^2}{4}$
\Box			

PART B

QUES	STION	1: (8 marks)	Marks
(a)	Fine	d $\frac{d}{dx}tan^{-1}\sqrt{x}$ (simplify your answer)	2
(b) (i) _{Fine}	$\frac{d}{dx}(e^{-x^2})$	1
(i	i) Hen	ace find $\frac{d^2}{dx^2}(e^{-x^2})$	1
(c)	Eva	luate $\int_0^{\sqrt{2}} \frac{2}{\sqrt{4-x^2}} dx$	2
(d)	/ If y	$y = tan^{-1}x$ find an expression for $\sin 2y$.	2
QUES	STION	2: (Start a new page) (8 marks)	Marks
(a)		Find $sin^{-1}\left[cos(\frac{3\pi}{4})\right]$	1
(b)		You are given the function $f(x) = (x+2)^2$	
	(i)	State the Domain and Range of $f(x)$ and sketch the curve	2 ·
	(ii)	Find the largest possible domain of $f(x)$, containing the point $(0, 4)$ for an inverse function $y = f^{-1}(x)$ to exist.	. 1
	(iii)	Find the inverse function $y = f^{-1}(x)$ from part (ii) above and give its Doma and Range	ain 3
	(iv)	Sketch $y = f^{-1}(x)$	1

QUESTION 3: (Start a new page) (8 marks)

(a)	Find the exact area beneath the curve $y = \frac{e^x}{1+e^x}$, above the x-axis, and between the lines $x = 0$ and $x = 1$	2

Marks

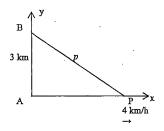
Give your answer in simplest terms.

A radio-active substance decomposes, and the mass present (M) after t years (b) from a certain date is given by $M = M_0 e^{-kt} \text{ where } M_0 \text{ and } k \text{ are constants}$

- Show that this is a solution to $\frac{dM}{dt} = -kM$
- If the initial mass is 100 gm and the mass after 2 years is 80 gm, find the value 2 of k to 2 dec. places.
- Find the number of years taken for the mass to halve (called the half life of the substance). Give your answer to 1 decimal place.

Sketch the graph of $M = M_0 e^{-kt}$ using the vertical axis as M and the horizontal axis as t. Show only keypoints.

QUESTION 4: (Start a new page) (8 marks)


_			Marks
(a)	(i)	Find $\frac{d}{dx} \left(\sin^{-1}x + \cos^{-1}x \right)$	1
	(ii)	Hence find the exact value of $sin^{-1}x + cos^{-1}x$	2
		You must justify your answer NOT just state it.	
(b)		Evaluate $\int 2^x dx$	1
(c)	j	The pressure $P \mathrm{gm}/cm^3$ on a mass of gas, of volume vcm^3 is given by the formula $Pv = 1500.$. 4
		If the volume is increasing at the rate of $10cm^3/sec$, find the rate at which the pressure is decreasing when the volume is $30~cm^3$	

QUESTION 5: (Start a new page) (8 marks)

Marks

- (a) (i) Find $\frac{d}{dx}(ln(sinx))$
 - Find $\frac{1}{dx}(ln(sinx))$
 - (ii) Hence, or otherwise, find $\int \cot 3x \, dx$

- 1.
- (b) Find $\int \frac{dx}{9+4x^2}$
- (c) A person, P, is walking directly east from a point A at a speed of 4 km/h (ie $\frac{dx}{dt} = 4$) and is being watched by an observer at a point B, which is 3 km due north of A, as shown below:

The distance between the observer and the walker is given as p km.

Find the rate of change of p when P has walked 4 km?

QUESTION 6: (Start a new page) (8 marks)

Marks

- (a) Show that the curve $y = \frac{e^{-x}}{1+x^2}$ is decreasing for all x, except x = -1
- (b) The population of seals on an island is increasing at a variable rate, and the number of seals (P) at any time t, is given by

$$P = A(1 - e^{-kt})$$
, where A and k are constants

- (i) Show that $\frac{dP}{dt} = k(A P)$
- (ii) Show that the maximum seal Population that the island can accommodate is A.
- (iii) If one quarter of the maximum population that the island can hold is reached after 5 hours, what fraction is populated after another 5 hours?

End of Examination

		*	•	
Name	· ·	Teacher	•	

45C 7ask 3 Extension 1 Mathematics

June 2013

PART A

Completely fill the response oval representing the most correct answer.

nome Nicholas Yan	
Name	Teacher

HSC 7ask 3 Extension 1 Mathematics 9

June 2013

	,	
Question 1		
a) d (tag=17)) - f'(x)	
dx (lan 1x	$\int -1+[f(x)]^2$	
f(x) = X ^½		
f'(x)= = = x'+	1+ (1)2	
	= 1/2 + 1+ X	
•	= 1/2/X × 1/4 x	
	//	
-	- 25x(1+x)	
6) i) d (e	$= -2x \cdot e^{-x^2}$	

$$\frac{11) d^{2}(e^{-x^{2}}) = -2e^{-x^{2}} + 4x^{2}e^{-x^{2}} \quad V = -2x \quad V = e^{-x^{2}}}{dx^{2}(e^{-x^{2}}) = 2e^{-x^{2}}(-1 + 2x^{2})}$$

$$= 2e^{-x^{2}}(-1 + 2x^{2})$$

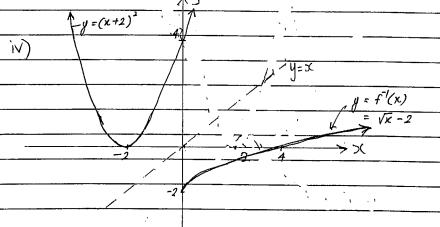
$$\frac{c}{c} = \frac{1}{2} \int_{0}^{2\pi} \frac{dx}{4} = \frac{1}{2} \int_{0}^{2\pi} \frac{dx}$$

(T)
5.5

Нате	Teacher
HSC Task 3 Extension 1 Mathematics	June 2013
d) y=tan-x	
X=tanu	SIN Y = Z
sinly= 2siny.cosy = 2x	X / / / / / / / / / / / / / / / / / / /
	VIII
	-+x ² (05 y
	1 x241
	7
2 siny. cosy	\
<u> </u>	
	,

\$\$
1

Нате	 Teacher _	
пате	 reacher_	


74SC 7ask 3 Extension 1 Mathematics June 2013

Question	2

a)
$$\sin^{-1}\left(\cos\left(\frac{3\pi}{4}\right)\right] = \sin^{-1}\left(-\frac{1}{12}\right)$$

D: all real oc

R: 4 = 0

x > -2

iii)	y=(x+2)2	
	X=(y+2)2	
	THE WALL	1112-15

TX	 D	:	χ	>0	√
	p	,	ΙΛ	1 truex.	

.n.	Name Teacher	:
	HSC 7ask 3 Extension 1 Mathematics June 2013	
	Question 3	
	a) $\int e^{x} = \int \left[\int \left(\int e^{x} \right) \right]^{1}$	
	o) Itex - [Inche 1] o	
	$= \left \ln \left(1 + e \right) - \ln \left(2 \right) \right $	
	- In (Ite)	
	- M(-3)	

b)i)
$$M = M_0 e^{-kt}$$

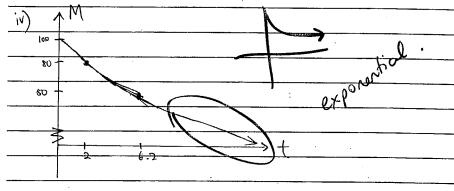
$$\frac{dM}{dt} = -k \cdot M_0 e^{-kt}$$

$$= -k M \text{ as regd}$$

ii) + bb = 400

$$80 = 100e^{-2k}$$

 $e^{-2k} = \frac{4}{5}$
 $|n(e^{-2k}) = |n(\frac{4}{5})|$
 $-2k(|ne) = |n(\frac{4}{5})|$
 $k = \frac{|n(\frac{4}{5})|}{-2}$
 $= 0.11$


iii) 50 = 100 e-kt	
1=e-kt	
$\ln(\frac{1}{z}) = \ln(e^{-kt})$	

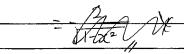
\$.5	
Y/a	

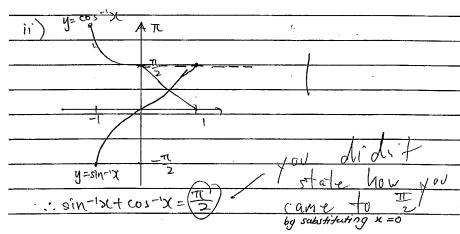
Name	7eacher	

HSC Task 3 Extension 1 Mathematics June 2013

$-kt = \ln(\frac{1}{2})$	
+- 加生	
-k	1/
= 6.2 years /	

	0.			
		····		


والمسترانية
12.13
No.
27.7
13.58
. E4 644
300
Name of the last
LAME TO


Name	Teacher	•

45C 7ask 3 Extension 1 Mathematics June 201.

Qı	nestic	on U	Γ .						
a)	i)	d	1 cin-1	v +	(05-1-	J() -	X	X A	
		d>c	CSIRC	700		7-1-	HAZK	THE STATE OF THE S	
			1		- 1		A		

$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}} = 0$$

$$6) \int 2^{x} dx = 42.2^{x} + C.$$

c) Want
$$\frac{dP}{dt}$$
 $P = \frac{1500}{V} = 1500 V^{-1}$ $\frac{dP}{dV} = -1500 V^{-2} = -\frac{1500}{V^{2}}$

$$\frac{dV}{dt} = 10$$

$$\frac{dV}{dt} = \frac{dP}{dv} \times \frac{dv}{dt}$$

$$= -\frac{1500}{V} \times 10$$

$$= -\frac{1500}{V} \times 10$$

$$= -\frac{1500}{30} \times 10 \text{ when } V = 30 \text{ cm}^3$$

$$= -\frac{50}{3} = -16\frac{3}{3} \frac{9m/m^3}{sec}$$

Tra in
35

Name	 7eacher	

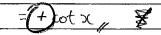
74SC 7ask 3 Extension 1 Mathematics June 2013

Pv=1500		
P = 1500		
z 1500v-1		
9b - 1200		
$dV - V^2$		
15 15 1.		

			Jet 1	1-6		
-,	Decreasing	at a	rate of	30	gm.	/cm3/
			/		-	11

<u> </u>	
	A
	V

 	· · · · · · · · · · · · · · · · · · ·	······································	


कृष्
A TAKE

Name		7eacher	

74SC 7ask 3 Extension 1 Mathematics June 2013

Question 5

a) i) $\frac{d}{dx} \left(h \ln (\sin x) \right) = + \frac{\cos x}{\sin x}$

 $\frac{11}{100} + \cot x = \frac{d}{dx} \left(\ln \left(\sin x \right) \right) \int \cot 3x \ dx$ $= \frac{d}{dx} \ln \left(\sin 3x \right) + c$

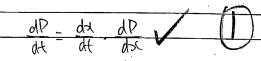
 $\frac{b) \int dx}{944x^2} = \int \frac{dx}{4(\frac{9}{4}+x^2)}$

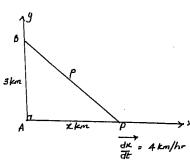
= 1 f dx = 4x2

 $\frac{1}{4} \left(\frac{d^{3}}{(\frac{3}{2})^{2}} + (x)^{2} \right)$

 $= \frac{1}{4} \left[\frac{1}{3/2} \tan^{-1} \frac{31}{3/2} \right] + C$

 $=\frac{1}{6}\tan^{-1}\left(\frac{2x}{3}\right)+C_{1/3}$




450 7ask 3	Extension 1	Mathematics
------------	-------------	-------------

June 2013

c) dx -4

want of dp When P=4

$$\rho^{2} = x^{2} + 3^{2}$$

$$\therefore \rho = \sqrt{x^{2} + 9} = (x^{2} + 9)^{2}$$

$$\frac{d\rho}{dx} = \frac{1}{2} (x^{2} + 9)^{2} \cdot 2x$$

$$= \frac{x}{\sqrt{1 + 9}}$$

$$\frac{dP}{dt} = \frac{dP}{dx} \times \frac{dx}{dt}$$

$$= \frac{x}{\sqrt{x^2 + 9}} \times 4$$

$$= \frac{4}{\sqrt{4^2 + 9}} \times 4$$

$$= \frac{16}{5} \text{ km/hr}$$

$$= \frac{3\frac{1}{5} \, km/hr}{5}$$

•
5 5
J D D
11111111

Пате	 7eacher	
цате	 runor	

74SC 7ask 3 Extension 1 Mathematics June 2013

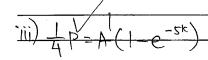
Questi on	6	
a) 115	e-1	
9-	H2C2 "	
dy	$\frac{1 - e^{-x}(1+x^2)-2xe^{-x}}{(1+x^2)^2} \frac{U=e^{-x}}{U=-e^{-x}} = \frac{1+x^2}{v=2x}$	
R	1- (HX2)2 U=-e-x V=2x	
	- e-x(-1-x2-2x)	
	$(1+x_s)_z$	
	e-x (xt1)2	
	(1+x²)2 W	
Whe	$a = -1, \frac{dy}{dx} = 0$	
But	for all other values of x	
	$(x+t)^2 > 0$	
	$e^{-x}(x+1)^2 < 0$ since $e^{-x} > 0$	
	.'. decreasing for all x except X = -1.	

5	745C	
	_	

Name	7eachcr	

745C Task 3 Extension 1 Mathematics

June 2013


b) i) P= A (1-e-kt)	
P= A-Ae-kt =>	$Aa^{-k+} = A - P$
17 116 -7	ne n i

$$= k(A-P)$$
 as regd.

11) For maximum,
$$\frac{dP}{dt} = 0$$

$$kA-kP=0$$

... Max pop. is A

:. when t = 10

$$e^{-2k}$$
 $=$ $\frac{3}{4}$

$$\rho = A \left(1 - e^{-i k} \right)$$
 where

$$-4 = A(1-e^{1n\frac{\pi}{k}}) - 10k = \frac{-10\ln \frac{9}{4}}{-3}$$

$$-5k = \ln(\frac{3}{4}) = A(1-\frac{9}{k}) = 2\ln\frac{3}{4}$$

$$= \frac{7}{k}A = \ln\frac{9}{k}$$

no fute man