
POLYNOMIALS 1

- For the polynomial $P(x) = 2x^3 3x^2 + 5x 7$, find 1)
 - (a) P(-2)
 - (b) the degree of P(x)
 - (c) the leading coefficient
 - (d) the constant term.
- If $p(x) = x^3 + 5$ and q(x) = 3x 1, find 2)
 - (a) p(3) + q(-1)
 - (b) the degree of p(x) + q(x)
 - (c) the degree of p(x) q(x)
 - (d) the degree of $p^{1}(x)$
- Find the zeros of $p(x) = x^3 2x^2 3x$. 3)
- Find the values of a, b and c in $p(x) = ax^2 + bx + c$ if p(x) is monic, the constant 4) term is -3 and the coefficient of x is -1.
- (a) Show $P(x) = 2x^2 x + 5$ has no zeros. 5)
 - (b) If Q(x) = 5x 3, show P(x) + Q(x) has one zero.
- If $f(x) = x^3 4x^2 + x 1$ and q(x) = x 2, divide f(x) by q(x) and write f(x) in the 6) form f(x) = g(x).p(x) + r(x)
- 7) (a) Find the zeros of p(x) = (x - 1)(x + 2)(x + 4).
 - (b) Use part (a) to draw a rough sketch of the polynomial.
- 8)
- Find the remainder when $p(x) = x^2 3x + 4$ is divided by x 2. Find the value of k if $f(x) = 2x^3 + x^2 + kx 2$ is divisible by x + 1. 9)
- (a) Write $P(x) = x^4 7x^3 + 13x^2 + 3x 18$ as a product of its linear factors. 10)
 - (b) What are the roots of P(x) = 0?
- (a) Show $f(x) = x^4 7x^3 + 10x^2$ has zeros 2 and 5. 11)
 - (b) Find the roots of f(x) = 0
- 12) A monic polynomial f(x) of degree 2 has a double root at x = -2. Find the polynomial.
- 13) (a) A polynomial P(x) of degree 3 has a double root at x = 1. Find P(x). Is this a unique answer?
 - (b) If P(x) is monic and has a constant term of -2, does this give a unique polynomial? Write down P(x) and find its zeros.
- A polynomial is given by $p(x) = (x + 3)^4 q(x)$. Show that $p(-3) = p^1 (-3) = 0$ 14)
- Find values of a and b if $f(x) = ax^3 + bx^2 2x + 5$ has a double root at x = 1. 15)
- If α, β and γ are the roots of $x^3 3x^2 + x 5 = 0$, find 16)
 - (a) $\alpha + \beta + \gamma$
 - (b) $\alpha\beta\gamma$
 - (c) $\alpha\beta + \beta\gamma + \alpha\gamma$
 - (d) $(\alpha + 1)(\beta + 1)(\gamma + 1)$
- Given α, β, γ and δ are the roots of $x^4 + 2x^2 3x + 4 = 0$, find 17)
 - (a) $\alpha + \beta + \gamma + \delta$
 - (b) $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$
 - (c) $\alpha\beta\gamma + \alpha\gamma\delta + \alpha\beta\delta + \beta\gamma\delta$
 - (d) $\alpha\beta\gamma\delta$
 - (e) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- One root of $2x^3 + 7x^2 x + 1 = 0$ is 3. If α and β are the other two roots, find 18)
 - (a) $\alpha + \beta$
 - (b) $\alpha\beta$
- If x = 4 is a double root of $x^4 x^3 2x^2 + 5x + 3 = 0$, find the sum of the other two 19)
- If two of the roots of $3x^3 + 11x^2 + 8x 4 = 0$ are equal, find all the roots. 20)

ANSWERS

- (a) -45 (b) 3 (c) 2 (d) -7 1)
- 2) (a) 28 (b) 3 (c) 4 (d) 2
- 3) 0, -1, 3
- 4) a = 1, b = -1, c = -3
- 5) (a) $\Delta = -39 < 0$ so P(x) has no zeros. (b) $P(x) + Q(x) = 2x^2 + 4x + 2$
- $\Delta = 0$ so P(x) has one zero. $x^3 4x^2 + x 1 = (x 2)(x^2 2x 3) 7$ 6)
- 7) (a) 1, -2, -4
 - (b)

- 8)
- 9)
- (a) $P(x) = (x 2)(x + 1)(x 3)^2$ (b) x = -1, 2, 3(a) f(2) = f(5) = 0 (b) x = 0, 2, 5 $f(x) = (x + 2)^2$ 10)
- 11)
- 12)
- (a) $P(x) = k(x-1)^2 (x + a)$ This is not unique as k and a vary. (b) $P(x) = (x-1)^2 (x-2)$ Zeros are 1, 2 $p(-3) = (-3+3)^4 q(-3) = 0$ $p^{-1}(-3) = 4(-3+3)^3 q(-3) + (-3+3)^4 q^{-1}(-3) = 0$ 13)
- 14)

$$p^{1}(-3) = 4(-3+3)^{3} q(-3) + (-3+3)^{4} q^{1}(-3) = 0$$

- 15) a = 8, b = -11
- (a) 3 (b) 5 (c) 1 (d) 10 16)
- (a) 0 (b) 2 (c) 3 (d) 4 (e) $\frac{3}{4}$ 17)
- (a) $-6\frac{1}{2}$ (b) $-\frac{1}{6}$ 18)
- 19)
- 20)