Exercise 2.2

- 1. Use the remainder theorem to find the remainder when each of the following polynomials is divided by the linear polynomial given.
 - (a) $x^3 + 4x^2 3x + 2$; x 2
- (b) $x^4 3x^3 + 2x 1$; x + 2
- $x^5 x^3 + 6; x + 1$

- (d) $x^3 + 2x + 1$; 2x 1
- (e) $x^3 2x^2 + x + 1$; 2x 3
- (f) $x^3 + 15x 1$; 3x + 1
- 2. Determine whether each of the following linear polynomials is a factor of the polynomial given.
 - (a) x + 2; $x^4 + 4x^3 + 4x^2$
- (b) x-1; $x^5 + 3x^2 6x + 3$
- (c) x + 1; $x^3 2x^2 + 6x + 9$
- (d) x-2; x^3-4x^2+3x+2
- (e) 2x + 1; $2x^3 3x^2 + 2x + 2$
- (f) 2x-1; x^3+4x^2-3x-1
- 3. Factorise each of the following polynomials.
 - (a) $2x^3 3x^2 + 1$

(b) $3x^3 - 2x^2 - 7x - 2$

(c) $x^4 - x^2 - 72$

(d) $x^5 + x^3 + x$

(e) $4x^3 - 13x + 6$

- (f) $4x^4 4x^3 9x^2 + x + 2$
- 4. If (x-2) is a factor of $ax^3 + 3x^2 2x + a$, find the value of a.
- 5.1 Show that (x a) is a factor of $x^3 + (1 a)x^2 + (3 a)x 3a$.
- 6. When the polynomial $x^2 + ax + b$ is divided by (x 1) and (x + 2), its remainder is 4 and 5 respectively. Find the values of a and b.
- 7. When $x^3 + px^2 + qx + 1$ is divided by (x 2), its remainder is 9; when it is divided by (x + 3). its remainder is 19. Find the values of p and q.
- 8. The expression $2x^3 + ax^2 + b$ can be divided exactly by (x + 1), and its remainder is 16 when divided by (x-3). Find the values of a and b.
- 9. The expression $ax^3 8x^2 + bx + 6$ can be divided exactly by $x^2 2x 3$. Find the values of a and b.
- 10. When the polynomials $x^3 + 4x^2 2x + 1$ and $x^3 + 3x^2 x + 7$ are divided by (x p), the remainders are equal. Find the possible values of p.
- 11. The expressions $x^3 4x^2 + x + 6$ and $x^3 3x^2 + 2x + k$ have a common factor. Find the possible values of k.
- 12. If (x-a) is a factor of the expression $ax^3 3x^2 5ax 9$, find the possible values of a. Factorise the expression for each of the values of a.
- 13. Given that $f(x) \equiv x^3 + kx^2 2x + 1$ has a remainder k when it is divided by (x k), find the possible values of k.
- 14. Find the value of k if (x + 1) is a factor of $2x^3 + 7x^2 + kx 3$. Using this value of k, solve the equation $2x^3 + 7x^2 + kx - 3 = 0$.
- 15. Find the values of a and b if $f(x) = ax^3 + bx^2 + 12$ can be divided exactly by both (x + 1) and (x-2) respectively. With these values of a and b, solve the equation f(x) = 0.
- 16. The expression $x^3 + ax^2 + bx 8$ is divisible by (x + 1). When it is divided by (x 2), its remainder is 42. Find the values of a and b and the value of the expression when x = 1.

Exercise 2.2

- **1.** (a) 20
- (b) 35
- (c) · 6

(f) $-6\frac{1}{27}$

(c) Yes

No

- (e) $1\frac{3}{8}$
- (d) $2\frac{1}{8}$ **2.** (a) Yes
 - (b) No
 - (e)
- (d) Yes 3. (a) $(x-1)^2(2x+1)$
 - (b) (x + 1)(x 2)(3x + 1)
 - (c) $(x + 3)(x 3)(x^2 + 8)$
 - (d) $X(1-X+X^2)(1+X+X^2)$
 - (e) (x+2)(2x-1)(2x-3)
 - (f) (x+1)(x-2)(2x+1)(2x-1)

- **7.** p = 3, q = -6
- **8.** a = -5, b = 7

10. 3, -2

- **9.** a = 3, b = -5
- **11.** k = 6, 0, -6
- **12.** a = 3, $3(x 3)(x + 1)^2$; a = -3, $-3(x + 3)(x - 1)^2$

- **15.** a = 3, b = -9, x = -1, 2, 2
- **16.** a = 10, b = 1:4