Revision Exercise.

1. Find the values of A, B and C such that

$$2x^3 + x^2 - 5x + 7 \equiv (x+2)(Ax^2 + Bx + C) + 5$$

- 2. Find F(x) if $6x^4 + 11x^3 + 8x + 5 = (2x + 1)F(x)$.
- 3. Express $\frac{9x}{(2x+1)^2(1-x)}$ in partial fractions.
- **4.** Express $\frac{x-2}{(x^2+1)(x-1)^2}$ in partial fractions in its simplest form.
- 5. Express the function $\frac{7x+4}{(x-3)(x+2)^2}$ as the sum of partial fractions with constant numerators
- **6.** If $f(x) = x^6 5x^4 10x^2 + p$, find the value of p such that (x 1) is a factor of f(x). With the value of p, find another factor of f(x) in the form (x + a), where a is a constant.
- 7. If $f(x) = ax^2 + bx + c$ has remainder 1, 25 and 1 when divided by (x 1), (x + 1) and (x 1) respectively, show that the function f(x) is a perfect square.
- 8. Given that (x-3) and (2x+1) are factors of

$$f(x) \equiv ax^4 + bx^3 + 13x^2 + 30x + 9,$$

find the values of a and b.

With these values of a and b, show that $f(x) \ge 0$ for all $x \in \mathbb{R}$.

- 9. The polynomial P(x) has remainder 1 when divided by (x-1), and remainder 3 when divided by (x+1). Find the remainder when P(x) is divided by (x^2-1) .
- 10. Find the value of k such that (2x 1) is a factor of

$$f(x) = 4x^4 + 8x^3 + kx^2 - 11x + 6$$

Assuming this value of k, factorise f(x) completely.

- 11. When the polynomial P(x) is divided by $(x^2 1)$, its remainder is (ax + b), where a and b are constants. Given that (x + 1) is a factor of P(x), and that the remainder is 4 when P(x) is divided by (x 1), find the values of a and b.
- 12. If the function $ax^2 + bx + c$ has a minimum value -5 when x = -1 and 0 when x = -2, find the values of a, b and c. Find the range of values of x such that $ax^2 + bx + c > 75$.
- 13. Show that the expression $-x^2 + px + q < 0$ for all values of $x \in \mathbb{R}$ if $-q > \frac{1}{4}p^2$. Prove, also that (24 x)(x 8) k < 0 for all values of $x \in \mathbb{R}$ if k > 64. Hence, or otherwise show that the expression

for all values of $y \in \mathbb{R}$. (6 + y)(4 - y)(y + 4)(y - 2) - 65 < 0

14. If x = 2 is a root of the equation

$$a^2x^2 + 2(2a - 5)x + 8 = 0,$$

find the possible values of a.

Find the corresponding roots with these values of a.

- 15. (a) Show that the equation $x^2 + (3\alpha 2)x + \alpha(\alpha 1) = 0$ has real roots for all values of $\alpha \in \mathbb{R}$.
 - (b) Show that $x^2 x + 1$ has the same sign for all values of x.
- 16. Show that roots of the equation

$$px^2 + (p+q)x + q = 0$$

are real for all values of p and q.

- 17. Find the value of p if $x^2 + (p+3)x + 2p + 3$ is an expression in the form of a perfect square.
- 18. If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, express $(\alpha 2\beta)(2\alpha \beta)$ in terms of a, b and c. Deduce the condition that one root of the equation is twice the other root.
- 19. If a, b and $c \in \mathbb{R}$, with $a \ne 0$, and the roots of the quadratic equation $ax^2 + bx + c = 0$ are real, show that the roots of $a^2y^2 (b^2 2ac)y + c^2 = 0$ are also real.

If the roots of the quadratic equation $ax^2 + bx + c = 0$ are α and β , state the values of $\alpha + \beta$ and $\alpha\beta$ in terms of a, b and c. Hence, find the roots of the second equation in terms of α

20. The roots of the equation $x^2 + px + 1 = 0$ are α and β . If one of the roots of the equation $x^2 + qx + 1 = 0$ is α^3 , prove that the other root is β^3 .

Without solving any equation, show that $q = p(p^2 - 3)$. Obtain the quadratic equation with roots α^9 and β^9 , giving the coefficients of x in terms of q.

- 21. If α and β are the roots of the equation $x^2 + px + q = 0$, show that p and q are the roots of the equation $x^2 + (\alpha + \beta \alpha\beta)x \alpha\beta(\alpha + \beta) = 0$. Find the non-zero values of p and q if the roots of the second equation are
 - (a) α and β ,
 - (b) α^2 and β^2 .
- The equation $x^2 + px + q = 0$ has roots whose difference is $2\sqrt{3}$ and product 6. Find the possible Values of p and q.
 - The equation $px^2 + qx + r = 0$, where $p \neq 0$, has roots α and β . Obtain a quadratic equation with roots $\alpha^2 + \frac{1}{\beta^2}$ and $\beta^2 + \frac{1}{\alpha^2}$, giving its coefficients in terms of p, q and r.
 - The polynomial $2x^4 ax^3 + 19x^2 20x + 12$ has a factor in the form $(x k)^2$, where $k \in \mathbb{N}$. Find the values of k and a and show that the polynomial is non-negative for all $x \in \mathbb{R}$.
 - (a) Find the value of the constant k such that (x + 1) is a factor of $2x^3 + 7x^2 + kx 3$. With this value of k, solve the equation

$$2x^3 + 7x^2 + kx - 3 = 0$$

Find the numerical values of the constants A, B, C and D such that

$$x^4 + Ax^3 + 5x^2 + 3 \equiv (x^2 + 4)(x^2 - x + B) + Cx + D.$$

26. The roots of the quadratic equation $x^2 + px + q = 0$, where $q \neq 0$, are α , β and one from the quadratic equation $x^2 + p'x + q = 0$ is $k\alpha$. Show that the other root β equation is $\frac{\beta}{k}$.

By assuming that $k^2 \neq 1$, write down an expression for the sum of the roots for the quadratic equations. Hence, find α and β in terms of p, p' and k. Deduce $k(kp-p')(kp'-p) = (k^2-1)^2q$.

For any p, p' and q, show that the sum of the four possible values of k is $\frac{pp'}{q}$.

- 27. If $f(x) = x^4 + 2x^3 + 5x^2 16x 20$, show that f(x) can be expressed in the form $(x^2 + x + a)^2 4(x + b)^2$, where a and b are constants to be determined. Hence, or otherwise, find both the real roots of the equation f(x) = 0. Find also the set of value of x such that f(x) > 0.
- 28. By using the substitution $y = x + \frac{1}{x}$, change the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ into a quadratic equation in y. Determine the two values of y which satisfy this quadratic equation. Hence, solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$.
- **29.** (a) Given that the roots of $ax^2 + bx + c = 0$ are β and $n\beta$, show that $(n+1)^2ac = nb^2$
 - (b) Given that α and β are the roots of the equation $x^2 px + q = 0$, prove that $\alpha + \beta = p$ a $\alpha\beta = q$. Prove also, that
 - (i) $\alpha^{2n} + \beta^{2n} = (\alpha^n + \beta^n)^2 2q^n$,
 - (ii) $\alpha^4 + \beta^4 = p^4 4p^2q + 2q^2$.

Hence, form a quadratic equation whose roots are the fourth power of the roots $x^2 - 3x + 1 = 0$

- 30. Determine the condition to be satisfied by k such that the expression $2x^2 + 6x + 1 + k(x^2 + 2)$ is positive for all $x \in \mathbb{R}$.
- 31. Find the set of values of x which satisfy the following inequalities.

(a)
$$\frac{x(x+2)}{x-3} < x+1$$

(b)
$$\frac{x^2 + 4x - 3}{x^2 + 1} < x$$

- Without using tables or calculator, show that
 - (a) $3 < \sqrt{13} < 4$, and deduce that $0 < \sqrt{13} 3 < 1$,
 - (b) $(\sqrt{13} + 3)^4 + (\sqrt{13} 3)^4 = 1904$,
 - (c) $1903 < (\sqrt{13} + 3)^4 < 1904$
- 33. Express $(\sqrt{p} + q\sqrt{r})^2$ in the form $a + b\sqrt{c}$. Without evaluating the square root or using tables or calculator, show that $\sqrt{10} + 2\sqrt{2} < 6$.
- 34. If p and q are positive numbers, prove that

$$(1-p)(1-q) > 1-p-q.$$

If $p, q, r \in \mathbb{R}^+$, with at least one of them less than unity, prove that

$$(1-p)(1-q)(1-r) > 1-p-q-r.$$

- 35. Solve each of the following inequalities.
 - (a) 2|x+2| < |4-x|
 - (b) $|3x + 1| 4|x + 1| \ge 0$

 - (c) $|x^2 3x 2| < 2$ (d) $\frac{6}{|x| + 1} < |x|$
- 36. Solve the following simultaneous equations.

$$\frac{x}{3} + \frac{y}{4} = 1$$
 and $\frac{3}{x} - \frac{2}{y} = \frac{7}{12}$

37. Find, in terms of a, b and c, the values of x, y and z, if

$$3x - y - z = a$$

$$-x + 3y - z = b$$

$$-x - y + 3z = c$$

From the equations

$$11x^2 - 8xy + 5y^2 = 32$$

$$x^2 + y^2 = 8,$$

$$7x^2 - 8xy + y^2 = 0.$$

deduce that Hence find all pairs of values of x and y which satisfy the given equations.

- By using the substitution $y = x + \frac{1}{x}$, solve the equation $2x^4 + x^3 6x^2 + x + 2 = 0$.
- 40. Find all pairs of values of x and y such that $\frac{3x+y+1}{8} = \frac{x-y}{5} = \frac{x^2-y^2}{5}$.

- 32. Without using tables or calculator, show that
 - (a) $3 < \sqrt{13} < 4$, and deduce that $0 < \sqrt{13} 3 < 1$,
 - (b) $(\sqrt{13} + 3)^4 + (\sqrt{13} 3)^4 = 1904$,
 - (c) $1903 < (\sqrt{13} + 3)^4 < 1904$
- 33. Express $(\sqrt{p} + q\sqrt{r})^2$ in the form $a + b\sqrt{c}$. Without evaluating the square root or using tables or calculator, show that $\sqrt{10} + 2\sqrt{2} < 6$.
- 34. If p and q are positive numbers, prove that

$$(1-p)(1-q) > 1-p-q$$
.

If $p, q, r \in \mathbb{R}^+$, with at least one of them less than unity, prove that

$$(1-p)(1-q)(1-r) > 1-p-q-r.$$

- 35. Solve each of the following inequalities.
 - (a) 2|x+2| < |4-x|
 - (b) $|3x + 1| 4|x + 1| \ge 0$

 - (c) $|x^2 3x 2| < 2$ (d) $\frac{6}{|x| + 1} < |x|$
- 36. Solve the following simultaneous equations.

$$\frac{x}{3} + \frac{y}{4} = 1$$
 and $\frac{3}{x} - \frac{2}{y} = \frac{7}{12}$

37. Find, in terms of a, b and c, the values of x, y and z, if

$$3x - y - z = a$$

$$-x + 3y - z = b$$

$$-x - y + 3z = c$$

From the equations

$$11x^2 - 8xy + 5y^2 = 32$$

$$v^2 + v^2 = 8$$

$$x^{2} + y^{2} = 8,$$

$$7x^{2} - 8xy + y^{2} = 0.$$

Hence find all pairs of values of x and y which satisfy the given equations.

- By using the substitution $y = x + \frac{1}{x}$, solve the equation $2x^4 + x^3 6x^2 + x + 2 = 0$.
- 40. Find all pairs of values of x and y such that $\frac{3x+y+1}{8} = \frac{x-y}{5} = \frac{x^2-y^2}{5}$.

ANSWERS

Revision Exercise

1.
$$A = 2$$
, $B = -3$, $C = 1$

2.
$$3x^3 + 4x^2 - 2x + 5$$

3.
$$\frac{1}{1-x} + \frac{2}{2x+1} - \frac{3}{(2x+1)^2}$$

4.
$$\frac{1}{x-1} - \frac{1}{2(x-1)^2} - \frac{2x+1}{2(x^2+1)}$$

5.
$$\frac{1}{x-3} - \frac{1}{x+2} + \frac{2}{(x+2)^2}$$

8.
$$a = 4$$
, $b = -20$

10.
$$k = -7$$
, $(2x - 1)(x - 1)(x + 2)(2x + 3)$

11.
$$a = 2$$
, $b = 2$

12.
$$a = 5$$
, $b = 10$, $c = 0$; $x < -5$ or $x > 3$

14.
$$\dot{a} = 1$$
, $x = 2$, 4; $a = -3$, $x = 2$, $\frac{4}{9}$

18.
$$\frac{(2b^2 - 9ac)}{a^2}$$
, $2b^2 = 9ac$

$$-\frac{b}{a}$$
, $\frac{c}{a}$, α^2 , β

$$x^2 + q(q^2 - 3)x + 1 = 1$$

18.
$$\frac{1}{a^2}$$
, $2b^2 = 9aa$
19. $-\frac{b}{a}$, $\frac{c}{a}$, α^2 , β^2
20. $x^2 + q(q^2 - 3)x + 1 = 0$
21. (a) $p = 1$, $q = -2$, $p = \pm 6$, $q = 6$

(b)
$$p = q = 4$$

22.
$$p = \pm 6$$
, $q = 6$

11. (a)
$$p = 1$$
, $q = -2$, (b) $p = q = 4$
12. $p = \pm 6$, $q = 6$
12. $p^2 r^2 x^2 - (q^2 - 2pr)(p^2 + r^2)x + (p^2 + r^2)^2 = 0$
14. $r = 2$, $a = 10$
15. (a) 2; $\frac{1}{2}$, -1, -3 (b) -1, 1, 5, -1

$$k = 2, a = 10$$

$$\alpha = \frac{(kp' - p)}{1 - k^2}, \ \beta = \frac{k(p' - kp)}{k^2 - 1}$$

$$\alpha = \frac{(kp' - kp)}{1 - k^2}, \ \beta = \frac{(kp' - kp)}{k^2 - 1}$$

$$\alpha = \frac{(kp' - kp)}{1 - k^2}, \ \beta = \frac{(kp' - kp)}{1 - k^2}$$

$$A, b = 3; x = -1, 2; \{x : x < -1 \text{ or } x > 2\}$$

11.
$$a = 4$$
, $b = 3$; $x = -1$, 2 ; $\{x : x < -1\}$
12. $x = \frac{10}{3}$, $-\frac{5}{2}$; $x = -\frac{1}{2}$, -2 , $\frac{1}{3}$, 3
13. (b) $x^2 - 47x + 1 = 0$
14. (a) $\frac{3}{4} < x < 3$ (b) $-\sqrt{3} < 3$
15. $x = \frac{3}{4} < x < 3$ (c) $x = \frac{3}{4} < x < 3$
16. (a) $x = \frac{3}{4} < x < 3$ (b) $-\sqrt{3} < 3$
17. $x = \frac{3}{4} < x < 3$ (c) $x = \frac{3}{4} < x < 3$
18. $x = \frac{3}{4} < x < 3$ (d) $x = \frac{3}{4} < x < 3$ (e) $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$ (e) $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
12. $x = \frac{3}{4} < x < 3$
13. $x = \frac{3}{4} < x < 3$
14. $x = \frac{3}{4} < x < 3$
15. $x = \frac{3}{4} < x < 3$
16. $x = \frac{3}{4} < x < 3$
17. $x = \frac{3}{4} < x < 3$
18. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
12. $x = \frac{3}{4} < x < 3$
13. $x = \frac{3}{4} < x < 3$
14. $x = \frac{3}{4} < x < 3$
15. $x = \frac{3}{4} < x < 3$
16. $x = \frac{3}{4} < x < 3$
17. $x = \frac{3}{4} < x < 3$
18. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
12. $x = \frac{3}{4} < x < 3$
13. $x = \frac{3}{4} < x < 3$
14. $x = \frac{3}{4} < x < 3$
15. $x = \frac{3}{4} < x < 3$
16. $x = \frac{3}{4} < x < 3$
17. $x = \frac{3}{4} < x < 3$
18. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
10. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
11. $x = \frac{3}{4} < x < 3$
12. $x = \frac{3}{4} < x < 3$
13. $x = \frac{3}{4} < x < 3$
14. $x = \frac{3}{4} < x < 3$
15. $x = \frac{3}{4} < x < 3$
16. $x = \frac{3}{4} < x < 3$
17. $x = \frac{3}{4} < x < 3$
18. $x = \frac{3}{4} < x < 3$
19. $x = \frac{3}{4} < x < 3$

$$\frac{3}{4} < x < 3$$

(b)
$$-\sqrt{3} < x < 1 \text{ or } x > \sqrt{3}$$
.

$$q^2r + 2q\sqrt{pr}$$

(b)
$$-3 \le x \le -\frac{5}{7}$$

$$x < 0, 3 < x < 4$$

 $x < 0, 3 < x < 4$

36.
$$x = 9$$
, $y = -8$; $x = \frac{12}{7}$, $y = \frac{12}{7}$

37.
$$x = \frac{1}{4}(2a + b + c), y = \frac{1}{4}(a + 2b + c),$$

 $z = \frac{1}{4}(a + b + 2c)$

38.
$$x = \pm 2$$
, $y = \pm 2$; $x = \pm \frac{2}{5}$, $y = \pm \frac{14}{5}$

39.
$$x = 1, 1, -2, -\frac{1}{2}$$

40.
$$x = -\frac{1}{4}$$
, $y = -\frac{1}{4}$; $x = 3$, $y = -2$