Exercise 2.5

_		_					
1.	Write dowr	i the sum	and product	of the roots	of each of	the following	quadratic equations.
~ .	111100 00111		t wire product	or the recto	or oach or	LITO TOLLO IT III	quadratic oquations,

(a)
$$x^2 + 5x - 6 = 0$$

(b) $2x^2 - 9x + 5 = 0$

(c)
$$4x^2 + 7x - 3 = 0$$

(d) x(x-3) = x+4

(e)
$$x^2 + px - p = 0$$

(g)
$$2x^2 - 3kx + k^2 = 0$$

(f) $x^2 - qx + q^2 = 0$ (h) $ax^2 - x(a+2) - a = 0$

2. Write down the quadratic equations whose sum and product of the roots are as follows.

(b)
$$-2, \frac{1}{4}$$

(d)
$$a, a^2$$

(e)
$$-(p+1), p^2-1$$

(b) $-2, \frac{1}{4}$ (c) $\frac{1}{3}, -\frac{1}{9}$ (e) $-(p+1), p^2 - 3$ (f) $\frac{a}{b}, \frac{1}{ab}$

3. If α and β are the roots of the quadratic equation $2x^2 - 5x - 1 = 0$, find the values of

(a)
$$\alpha^2 + \beta^2$$

(b)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(c)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$

4. If α and β are the roots of the quadratic equation $x^2 + 2x - 1 = 0$, find the values of

(a)
$$\alpha^3 + \beta^3$$

(b)
$$(\alpha + \beta)^2$$

(c)
$$(\alpha - \beta)^2$$

5. If α and β are the roots of the quadratic equation $2x^2 - 4x + 5 = 0$, find the values of

(a)
$$\frac{1}{\alpha+1} + \frac{1}{\beta+1}$$

(b)
$$\frac{1}{2\alpha + \beta} + \frac{1}{\alpha + 2\beta}$$

(a)
$$\frac{1}{\alpha+1} + \frac{1}{\beta+1}$$
 (b) $\frac{1}{2\alpha+\beta} + \frac{1}{\alpha+2\beta}$ (c) $\frac{1}{\alpha^2+1} + \frac{1}{\beta^2+1}$

6. Given that α and β are the roots of the quadratic equation $x^2 - 3x + 5 = 0$, find the quadratic equation whose roots are

(a)
$$\alpha-2$$
, $\beta-2$

(b)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

(c)
$$\alpha^2$$
, β^2

(c)
$$\alpha^2$$
, β^2 (d) $(\alpha - \beta)$, $(\beta - \alpha)$

7. The roots of the quadratic equation $x^2 + 3x + 1 = 0$ are α and β . Find the equation, whose roots are as follows.

(a)
$$2\alpha$$
, 2β

(b)
$$\frac{\alpha}{\beta+1}$$
, $\frac{\beta}{\alpha+1}$ (c) $2\alpha-\beta$, $2\beta-\alpha$

(c)
$$2\alpha - \beta$$
, $2\beta - \alpha$

8. The roots of an equation are the reciprocals of the roots of the equation $x^2 + 2ax - c^2 = 0$. Find that equation.

9. If one of the roots of the equation $mx^2 + nx + p = 0$ is twice the other root, find the relation between m, n and p.

10. If one of the roots of the equation $x^2 - 4px + 27 = 0$ is the square of the other root, find the value of p.

Exercise 2.5

(b)
$$\frac{9}{2}$$
, $\frac{5}{2}$

(c)
$$-\frac{7}{4}$$
, $-\frac{3}{4}$

(a)
$$-5, -6$$
 (b) $\frac{9}{2}, \frac{5}{2}$ (c) $-\frac{7}{4}, -\frac{3}{4}$ (d) $4, -4$ (e) $-p, -p$ (f) q, q^2 (g) $\frac{3k}{2}, \frac{k^2}{2}$ (h) $\frac{a+2}{a}, -1$

(a)
$$x^2 - 3x + 8 = 0$$

(b)
$$4x^2 + 8x + 1 = 0$$

(c)
$$9x^2 - 3x - 1 = 0$$
 (d) $x^2 - ax + a^2 =$

(e)
$$x^2 + (p+1)x + p^2 - 3 = 0$$

(f)
$$abx^2 - a^2x + 1 = 0$$

3. (a)
$$7\frac{1}{4}$$

b)
$$-14\frac{1}{2}$$
 (c) -5

5. (a)
$$\frac{8}{11}$$
 (b) $\frac{4}{7}$

(c)
$$\frac{4}{25}$$

6. (a)
$$x^2 + x + 3 = 0$$
 (c) $x^2 + x + 25 = 0$

(b)
$$5x^2 - 3x + 1 = 0$$

$$(0) \quad X^2 + X + 20 = 0$$

$$(1) \cdot x^2 + 11 = 0$$

7. (a)
$$x^2 + 6x + 4 = 0$$

(d)
$$x^2 + 11 = 0$$

(b) $x^2 + 4x - 1 = 0$

(c)
$$x^2 + 3x - 9 = 0$$

8. $c^2x^2 - 2ax - 1 = 0$

9.
$$9pm = 2n^2$$