STANDARD FORM AND INDICES YEARS 9 AND 10

$4x^0$ is equal to: 1

1

В

40

D the expression cannot be evaluated unless x is specified.

2ab⁵ means: 2

2 x a x b x b x b x b x b

10 x a x b В

2ab x 2ab x 2 ab x 2ab x 2 ab D

The basic numeral for 2^{-3} is: 3

A -6

-8 В

$(2a^3)^4$ is equal to: 4

В

С $16a^{12}$

 $212a^{12}$ D

5 540 000 000, when expressed in standard form, is equal to:

 5.4×10^7 Α

B 5.4 x 10⁸ D 5.4 x 10⁻⁸

 54×10^7

ab⁻⁵c³ is equal to: 6

 $B = \frac{b^s}{ac^s}$

 $C = \frac{c^3}{ab^5}$

The basic numeral for 2.33×10^{-4} is: 7

В 23 300

C 0.000 023 3 D 0.000 233

$8 \qquad \frac{a^4}{3h^{-2}} \text{ is equal to:}$

 $A \qquad \frac{a^4b^2}{3} \qquad \qquad B \qquad \frac{3b^2}{a^4}$

 $C = \frac{ab^6}{3}$

 $3a^4b^2$

- When expressed with positive indices, $\frac{a^6b^7}{a^3b^{-7}}$ is equal to:
- a^2b^{14} C
- a^3b^{14} D

- A a^2 $(4a^{-6})^{-2}$ is equal to:
 - A -8a¹²
- B $\frac{a^{12}}{16}$
- $C \frac{8}{8}$
- D 4a¹²

- $\sqrt{x^{-16}}$ is equal to: 11
 - $A = \frac{1}{r^4} \qquad B = \frac{1}{r^8}$
- $C -x^4$
- \mathbf{D}

- The basic numeral for $9^{\frac{1}{2}}$ is: 12
 - A 4 ½
- В 3
- D -3

- m⁻²n⁷p⁴ x m²n⁻⁹p is equal to:
- A $\frac{p^5}{n^2}$ B $\frac{p^4}{n^2}$ C $\frac{mp^5}{n^2}$
- D $\frac{mp^4}{m^2}$
- When expressed in simplest form with positive indices, $\frac{a^3}{b^4} \div \frac{b^4}{a^3}$ is:
- $C = \frac{a^8}{h^8}$

- 15 $\frac{30a^6bc^4}{6a^6b^2c^8}$ is equal to:
 - A $\frac{24a}{bc^4}$ B $\frac{24}{bc^2}$ C $\frac{5}{bc^2}$

- 0.000 010 2 written in standard form is: 16
 - 1.02×10^{-5} 1.02×10^{5} A

- B 1.02×10^{-4} D 1.2×10^{-5}
- If a spacecraft travelled at 2×10^4 kph from the Earth to the Moon, which is a distance of 4×10^5 km, the time it would take is:

107

- 20 hours
- 80 hours В
- C
- 6×10^9 hours D 8×10^9 hours

18 $\frac{9 \times 10^{24} \times 6 \times 10^{-12}}{12 \times 10^{10}}$ is equal to:

A
$$3 \times 10^2$$

B
$$4.5 \times 10^2$$

C
$$3 \times 10^{22}$$

D
$$4 \times 10^{22}$$

 $\sqrt{2^{-6}}$ is equal to: 19

$$C = \frac{1}{2^3}$$

You can't find the square root of a negative D number.

 $125^{\frac{2}{3}}$ is equal to: 20

B
$$83\frac{1}{3}$$
 C $\frac{1}{125}$

$$C = \frac{1}{125}$$

10 D

THE NEXT 2 QUESTIONS REFER TO THE FOLLOWING INFORMATION.

The diameter of a red blood cell is about 8 x 10⁻⁵cm.

If an artery could accommodate about 4 000 of these cells across its width, its diameter 21 would be approximately.

The number of red blood cells which will fit into a line exactly 1 metre long is: 22

B
$$1.25 \times 10^8$$

C
$$1.25^6$$

D
$$1.25 \times 10^6$$

The basic numeral for $2^{-2} + 3^{-1}$ is: 23

$$A \qquad \frac{1}{125}$$

B
$$\frac{1}{7}$$

A
$$\frac{1}{125}$$
 B $\frac{1}{7}$ C $\frac{7}{12}$

The basic numeral for $\frac{(2^{x+1})^4}{4^{2x}}$ is: 24

- 25 The basic numeral for $\frac{3a^{-7} \times 2a^{-3} \times a^7}{12a^7 \times (a^{-5})^2}$ is:
 - $A \qquad \frac{5}{12}$

 $B = \frac{1}{2}$

C -7

- D Unable to be determined unless the value of a is known.
- The average distance between the Sun and the Earth is 1.5 x 10⁸ km. The distance around the Earth's Equator is 40 000 km. A journey from the Earth to the Sun would be equivalent to travelling around the Equator approximately:
 - A 400 times

- B 4 000 times
- C 25 000 times
- D 6×10^{12} times
- 27 The basic numeral for $\frac{(-10)^5 \times -10^{20}}{10^{-20} \times (-10^9)^5}$ is:
 - A $\frac{1}{9}$
 - B 1
 - C -1
- 28 The only perfect square in the following list is:
 - A 4x
- $B x^9$
- $C x^6$
- $D = x^{\frac{1}{2}}$

- 29 $2^9 \times 5^9$ is equal to:
 - A 10⁹
- $B 10^{18}$
- C 7¹⁸
- $D 7^9$

- 30 If $2^{x-5} = 32$, then x equals:
 - A 11
- B 10
- C 21
- D 2¹⁰

ANSWERS TO STANDARD FORM AND INDICES

1 B	12 A	3 C	4 C		6 D
7 D	8 A	9 D	10 B	11 B	12 B
13 A	14 C	15 D	16 A	17 A	18 B
19 C	20 A	21 D	22 D	23 C	24 C
25 B	26 B	27 C	28 C	29 A	30 B