C.E.M.TUITION

TA T		
Name:		
*		

Review Topic : Angle between lines, parametric equations and circle geometry

Year 12 - Maths Ext. 1

PHONE: 9666-3331

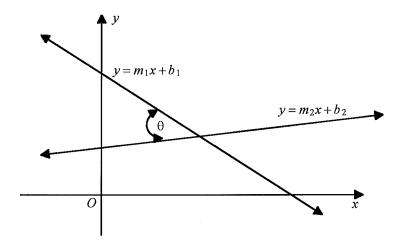
FAX: 9316-4996

MOBILE: 0412 880 475

For corrections refer to pages:

1. Angle between two lines:

If m_1 and m_2 are the gradients of the lines : $L_1: y = m_1x + b_1$ and $L_2: y = m_2x + b_2$ and θ is the angle between the lines, then



$$\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Examples:

(1) Find the acute angle between the lines:

$$L_1: y = 3x + 1 \text{ and } L_2: x + 2y + 7 = 0$$

(2) Find two possible values of p if the lines

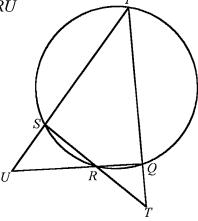
$$L_1: px-y-7=0 \text{ and } L_2: 3x+y-2=0 \text{ intersect at } 45^0.$$

(3) What are the *two* possible gradients of lines that make an angle of 45° with the line 2x - y + 5 = 0?

2. Circle Geometry:

Referring to your 3 Unit Rules and formulae booklet, try these examples.

- (1) In the diagram shown, PQT, PSU, SRT and QRU are straight lines and $\angle PTS = \angle PUQ$.
- (a) Show that $\angle PQR = \angle PSR$.

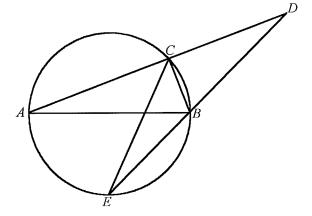


(b) Prove that PR is the diameter of the circle.

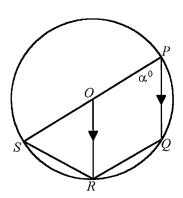
(2) AB is the diameter of the circle ACBE. ACD and EBD are straight lines. AB, BC and EC are joined.

$$\angle BAC = 28^{\circ}$$
 and $\angle CDB = 30^{\circ}$,

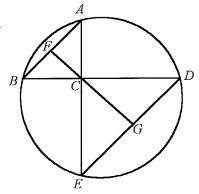
find the size of $\angle BCE$ giving reasons.



(3) PS is the diameter of the circle, with centre O. OR and PQ are parallel, and $\angle OPQ = \alpha^0$. If SR and QR are joined, prove that OR bisects $\angle SRQ$.



- (4) BD and AE are two perpendicular chords intersecting at C. $CG \perp DE$ and GC is produced to meet AB at F.
- (a) Show that $\triangle BFC$ is isosceles.

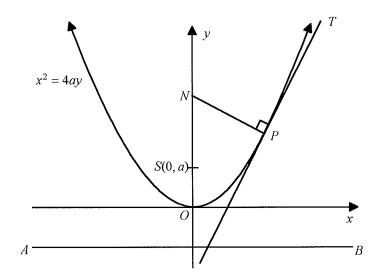


(b) Show that GF bisects AB.

PARAMETRIC FORM OF THE PARABOLA

Review:

For the parabola $x^2 = 4ay$, complete the following:



(a)	the point $S(0, a)$ is called the
	the point b(o, a) is canca the

(b) the equation of the directrix AB is ______.

(c) PT is called the

(d) PN is called the _____.

(e) the parametric equations of P (using p as a parameter) is :

(f) draw the line representing the "latus rectum"

(g) the length of the latus rectum is _____.

(h) draw a focal chord passing through ${\cal P}.$

Derivation of equations of the chord, tangent and normal

Students are required to be able to derive the following equations:

(A clear concise diagram is always helpful).

(1)(a) Show that the equation of the chord joining $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ is given by

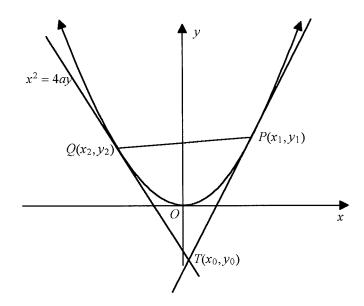
$$(p+q)x-2y-2apq=0.$$

(b) If this chord passes through the focus, show that pq = -1.

- (2) Show that the equation of the
 - (a) tangent to the parabola $x^2 = 4ay$ at $P(2ap, ap^2)$ is $px y ap^2 = 0$

(b) normal at $P(2ap, ap^2)$ is $x + py = 2ap + ap^3$.

(3)



(a) Show that the equation of the tangent at $P(x_1, y_1)$ is $xx_1 = 2a(y + y_1)$.

(ii) Hence, or otherwise, show that the equation of chord of contact drawn from an external point $T(x_0, y_0)$ is given by:

$$xx_0=2a(y+y_0)$$

Examples:
(1) If the point $P(2ap, ap^2)$ is one end of a focal chord of the parabola $x^2 = 4ay$, show that the other end is the point $Q\left(-\frac{2a}{p}, \frac{a}{p^2}\right)$.

C.E.I	vi 5 Unit Keylew - 1 at ametic Representations	
(2) S	Show that the tangents at the extremities of a focal chord of a parabola $x^2 = 4ay$ meet	at
ri	ght angles on the directrix.	

(3) A chord of the parabola $x^2 = 4ay$ subtends a right angle at the vertex. Find the locus of the midpoint of the chord.

(4) Normals at the extremities of a focal chord of the parabola $x^2 = 4ay$ intersects at Q. Show that the locus of Q as the chord varies is given by $x^2 = a(y - 3a)$.

(5) (a) If P and Q are the points $(2ap, ap^2)$ and $(2aq, aq^2)$ on the parabola $x^2 = 4ay$, show that the coordinates of the point of intersection T of the tangents at P and Q are (a(p+q), apq).

(b) Hence, show that the area of ΔTPQ is $\frac{1}{2}a^2(p-q)^3$.

C.E.M. - 3 Unit Review - Parametric Representations

(6) If the line px + qy + r = 0 is a tangent to the parabola $x^2 = 4ay$, show that :

$$ap^2 = qr$$
.