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(7) (b) By considering (1—x)" [1 + 1] , or otherwise, express
X

I () ) e simpis o

n n+2
[MJ(—l)z if n is even; 0 if n is odd.




C.EM.-YR 12 - EXT.1 REVIEW OF BINOMIAL THEOREM II & PROBABILITY 2

HSC ‘98

(7) (a) (i) Use the binomial theorem to obtain an expansion for

(id)

(1+ x)zn +(1- x)zn , where 7 is a positive integer.

Hence evaluate 1+ °C, + *°C, +....+ °C,,,.

2(147Cyx* + " Cox* +.. 4 7C 67" )
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(7) () (i) Simplify n("llJ + n[:] ot n[i]

98]

;1(2”71 — 2)

(i)  Find the smallest positive integer #n such that

n—1 n—1 n—1
n[ 1 ]+n[ ) ]—I—...—I—n[ _2]>20 000.
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(7) (a) Using the fact that (1 + x)4 (1 + x)9 = (1 + x)13 , show that

4C09C4+4C19C3+4C29C2+4C39C1+4C49C0:BC4.
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(3) (b) Find the value of the term that does not depend on x in the expansion of
6
[x2 + é]
X
1215
HSC ‘92

(5) (c) Consider the binomial expansion 1+ [T]x + [Z]xz +..+ [n] ' =(1+x).

()  Show that 1~(?]+[Z]—...+(—1)" [] —0,

n
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1{n} 1~ n 1 (7 1
i Showthat 1——{ |+—| |—...+(—1 = .
(1) 2[1] 3[2] ( ) n+1[”] n-+41
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(6) (c) (i) Show that x" (1+x)" [1 +l
X

}n =(1+x)",

n 2 n 2 n 2 2n
(ii) Henceprovethat1+(l} +[2] —l—...—l—{ ] =( ]
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MISCELLANEOUS EXERCISES:

(1)
Statistics show that, of motorists tested for drink-driving, 3% are found to be
over the limit. Find, as decimals to three places, the probability that, in a group
of thirty drivers tested:

(i) none will be over the limit

(ii) exactly one will be over the limit

(iii)  at least two will be over the limit.
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(2) A die is loaded in such a way that in 8 throws of the die, the probability of getting 3 even
numbers is four times the probability of getting 2 even numbers.

Find the probability that a single throw of the die results in an even number.
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(3) An unbiased die is thrown six times. Find the probabilities that the six scores obtained
will: (1) be 1,2, 3, 4, 5, 6 in some order,

=N

324
(ii) have a product which is an even number

63

64
(iii) consists of exactly two 6's and four odd numbers

N

192
(iv) be such that a 6 occurs only on the last throw and exactly three of the first five throws
result in odd numbers.

5
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(4) A given school in a certain State has 3 mathematics teachers. The probability in that State
that a mathematics teacher is female is 0.4.

(a) What is the probability that in the given school there is at least one female
mathematics teacher?

0.784

(b) In the same State the probability that a mathematics teacher (male or female) is a
graduate is 0.7. What is the probability that in the given school none of the three
mathematics teachers is a female graduate?
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SOLUTIONS:
M

(i) Probability = (0-97)°° = 0-401
(i) Probability = 3°C,(0-97)%(0-03)
=0-372

(iii) Probabﬂiiy = 1-(0-401+0-372)
= 0-227

(2) Let p be the probability of throwing an even number and ¢ be the probability of throwing

an odd number.
In 8 throws of a die: P(3 even numbers) =term in p° in the expansion of

8
(¢+p) = Cia’p’ =564°p’.
P(2 even numbers) =term in p” in the expansion of

(97+P)8 =* C2q6p2 = 28q6p2 and since

P(3 even nos) =4x P(2 even nos)

56¢° p* =4x284°p?

Assuming p,qg#0 then p=2¢g= 2(1 —p)

w | N

~.p=P(1 even number) =

(3) (i) P(scores will be 1,2,3,4,5,6 in some order) = % o

(ii) P(scores will have a product which is an even number).
=1- P(scores will have a product which is an odd number)

=1- P(all 6 scores are odd numbers)

6
:1_(lj _63
2) 64

(iii) P(scores will consist of exactly two 6's and four odd numbers)

LOIGE:
Sol-| =] ==
6)\2 192

(iv) P(scores will be such that a 6 occurs only on the last throw and exactly three of the first

five throws result in odd numbers)

3 2
6 23 216
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(4) (a) P(at least one female mathematics teacher)
=1- P(no female mathematics teacher) |
=1- P(3 male mathematics teacher) |

=1-(0.6) =0.784

(b) Let p =Probability of any teacher being a female graduate
=0.4x0.7=0.28

qg=0.72
Using the binomial expansion of ( p+q )3

Probability of no female graduates =’ C,p°q’ = (0.72)3 =0.373




