NAME:			

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – EXT.1 MATHS

REVIEW TOPIC: HARDER 2U PROBLEMS – SP1

Received on	Check corrections
	on pages:
Completed on	
Checked by	

Tutor's Initials

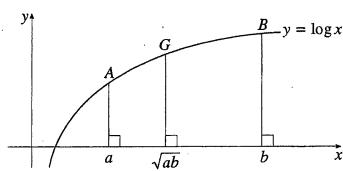
Dated on

EXERCISES:

(1) (a)

Determine: $\lim_{h \to 0} \frac{\sin \frac{h}{2}}{h}$

(b)



M is the midpoint of AB. Show that GM is parallel to the x axis.

(2)

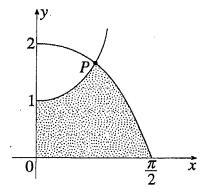
P is a point where the graphs of $y = \tan x$ and $y = \cos x$ intersect.

(i) If the x coordinate of P is α , show that $\sin \alpha = \cos^2 \alpha$.

(ii) Prove that, at all such points P, the tangents to the two graphs are perpendicular.

(3)

P is the point of intersection between x = 0 and $x = \frac{\pi}{2}$ of the graphs of $y = \sec x$ and $y = 2\cos x$, as shown.



(i) Verify that the x coordinate of P is $\frac{\pi}{4}$.

(ii) The shaded region makes a revolution about the x axis. Show that the volume of the resulting solid is $\frac{\pi^2}{2}$ cubic units.

(4)

(i) Sketch a graph of y = |2x-3|.

(ii) Show graphically that the equation |2x-3| = x-2 has no solutions.

(5)

$$f(x) = \sin^3 x + \cos^3 x$$

(i) Show that, when f(x) = 0, $\tan x = -1$.

(ii) Show that, when f'(x) = 0, $\sin x = 0$, $\cos x = 0$ or $\tan x = 1$.

(iii) Sketch a graph of y = f(x) for $0 \le x \le 2\pi$.

(6)

A solid cylinder, radius r and height h, is to be constructed under the condition that the sum of its height and circumference is S, where S is constant.

Prove that

(i) if it is given its maximum possible volume, $h = \frac{S}{3}$

(ii) if it is given its maximum possible total surface area, $r + h = \frac{S}{2}$.

SOLUTIONS:

(1)(a)

$$\lim_{h \to 0} \frac{\sin \frac{h}{2}}{h} = \lim_{h \to 0} \frac{1}{2} \cdot \frac{\sin \frac{h}{2}}{\frac{h}{2}}$$
$$= \frac{1}{2}$$

(b) $A(a, \log a), B(b, \log b)$ At M, $y = \frac{\log a + \log b}{2}$ At G, $y = \log \sqrt{ab}$ $= \log(ab)^{\frac{1}{2}}$ $= \frac{1}{2}(\log ab)$ $= \frac{\log a + \log b}{2}$

Hence GM is parallel to the x axis.

(2)

(i)
$$\tan \alpha = \cos \alpha$$

 $\frac{\sin \alpha}{\cos \alpha} = \cos \alpha$
 $\sin \alpha = \cos^2 \alpha$

(ii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
$$\frac{d}{dx}(\cos x) = -\sin x$$
Product of gradients
$$= (\sec^2 \alpha)(-\sin \alpha)$$
$$= (\sec^2 \alpha)(-\cos^2 \alpha), \text{ from part (i)}$$
$$= -1$$

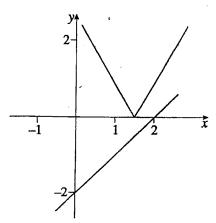
(i)
$$2\cos\frac{\pi}{4} = \frac{2}{\sqrt{2}}$$
$$= \sqrt{2}$$
$$= \sec\frac{\pi}{4}$$

$$V = \pi \int_0^{\frac{\pi}{4}} \sec^2 x \, dx$$
$$= \pi \Big[\tan x \Big]_0^{\frac{\pi}{4}}$$
$$= \pi \text{ cubic units.}$$

(ii) For the region above
$$0 < x < \frac{\pi}{4}$$
, $V = \pi \int_0^{\frac{\pi}{4}} \sec^2 x \ dx$ $= \pi \left[\tan x \right]_0^{\frac{\pi}{4}}$ $= \pi$ cubic units. For the region above $\frac{\pi}{4} < x < \frac{\pi}{2}$, $V = \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 4 \cos^2 x \ dx$ $= 2\pi \left[\frac{\pi}{2} (1 + \cos 2x) \ dx \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $= 2\pi \left[\frac{\pi}{2} + 0 - \frac{\pi}{4} - \frac{1}{2} \right]$ $= \left(\frac{\pi^2}{2} - \pi \right)$ cubic units.

Hence total volume is $\frac{\pi^2}{2}$ cubic units.

(4) (i)



(5)

(i)
$$\sin^3 x + \cos^3 x = 0$$
$$\tan^3 x + 1 = 0$$
$$\tan^3 x = -1$$
$$\tan x = -1$$

(ii)
$$3\sin^2 x \cos x - 3\cos^2 x \sin x = 0$$
$$3\sin x \cos x(\sin x - \cos x) = 0$$
$$\sin x = 0, \cos x = 0, \text{ or } \sin x = \cos x$$
$$\tan x = 1$$

(iii)
$$\sin x = 0$$
 at $(0,1)$, $(\pi,-1)$ and $(2\pi,1)$
 $\cos x = 0$ at $(\frac{\pi}{2},1)$ and $(\frac{3\pi}{2},-1)$
 $\tan x = 1$ at $(\frac{\pi}{4},\frac{1}{\sqrt{2}})$ and $(\frac{5\pi}{4},-\frac{1}{\sqrt{2}})$

$$2\pi r + h = S$$
(i)
$$V = \pi r^{2}(S - 2\pi r)$$

$$= \pi \left(Sr^{2} - 2\pi r^{3}\right)$$

$$\frac{dV}{dr} = \pi \left(2Sr - 6\pi r^{2}\right)$$

$$= 2\pi r(S - 3\pi r)$$

$$\frac{d^{2}V}{dr^{2}} = 2\pi \left(S - 6\pi r\right)$$
When
$$r = \frac{S}{3\pi}, \quad h = \frac{S}{3},$$

$$\frac{dV}{dr} = 0, \quad \frac{d^{2}V}{dr^{2}} < 0,$$

and hence V is maximum.

(ii)
$$A = 2\pi r^2 + 2\pi r \left(S - 2\pi r\right)$$
$$= 2\pi \left(r^2 + Sr - 2\pi r^2\right)$$
$$= 2\pi \left(Sr + r^2 - 2\pi r^2\right)$$
$$\frac{dA}{dr} = 2\pi \left(S + 2r - 4\pi r\right)$$

$$\frac{dA}{dr} = 0, \quad S = 4\pi r - 2r$$

$$= r(4\pi - 2)$$

$$r = \frac{S}{4\pi - 2}$$

$$h = S - \frac{2\pi S}{4\pi - 2}$$

$$= \frac{2\pi S - 2S}{4\pi - 2}$$

$$r + h = \frac{2\pi S - S}{4\pi - 2}$$

$$= \frac{S(2\pi - 1)}{2(2\pi - 1)}$$

$$= \frac{S}{2}$$

$$\frac{d^2A}{dr^2} = 2\pi (2 - 4\pi) < 0, \text{ hence maximum.}$$