C.E.M.TUITION

Marana a		
Name:		

Review Topic: Mathematical Induction

(Lesson Notes & Tutorial Exercises)

Maths Extension 1

PHONE: 9666-3331 FAX: 9316-4996

PRINCIPLE OF MATHEMATICAL INDUCTION:

There are *four* main types to consider, namely:

TYPE 1: ALGEBRAIC

Prove that the following are true for all positive integers n.

(1)
$$1 + (1+2) + ... + (1+2+...+2^{n-1}) = 2^{n+1} - n - 2$$

(2)
$$\sum_{r=1}^{n} r(r!) = (n+1)! - 1$$

(3)
$$\sum_{r=1}^{n} (2^{r-1} + 3^{r-1}) = (2^{n} - 1) + \frac{1}{2}(3^{n} - 1)$$

TYPE 2 : DIVISIBILITY OR MULTIPLICITY :

(1) Prove that $3^n + 5$ is divisible by 8 for all **odd** positive integers n.

(2) Prove that $3^n + 7^{n+1}$ is a multiple of 4 for all positive integers n.

TYPE 3: INEQUALITIES:
This is more likely in the 4 Unit paper. Nevertheless, you should try a couple of these.

(1) Prove by mathematical induction that $5^n \ge 3n + 7$ for n > 1.

(2) Prove by mathematical induction that $5^n - 3 > 4^n + 20$ for $n \ge 3$.

TYPE 4: MISCELLANEOUS PROBLEMS

Again, these questions are more likely to appear in the 4 Unit paper. Nevertheless, try these couple of examples.

(1) A sequence is defined by $u_1 = 2$, $u_2 = 8$ and for all positive integers n,

$$u_{n+2} = 4(u_{n+1} - u_n)$$

(a) Evaluate u_3 and u_4 .

(b) Verify that $u_n = n(2^n)$ for n = 1, 2, 3, 4 and investigate whether this result holds for all positive integers.

(c) Prove that the result in (b) is true for all positive integers.

(2) Given that $u_1 = 1$, $u_2 = 5$ and $u_n = 5u_{n-1} - 6u_{n-2}$ for n = 2, 3, 4, ...

Prove by induction that $u_n = 3^n - 2^n$ is true for all n.

In most of the solutions, steps 1 and 3 have been left out.

TYPE 1:

(1) <u>Step 2:</u> Assume true for n = k i.e. $1 + (1+2) + ... + (1+2+...+2^{k-1}) = 2^{k+1} - k - 2$ Required to prove that it is also true for n = k + 1 i.e. $1 + (1+2) + ... + (1+2+...+2^k) = 2^{k+2} - (k+1) - 1$

Proof: L.H.S. = 1 + (1 + 2) + ... + (1 + 2 + ... + 2^{k-1}) + (1 + 2 + ... + 2^k)
=
$$2^{k+1} - k - 2 + \frac{1(2^{k+1} - 1)}{2 - 1}$$

= $2^{k+1} - k - 2 + 2^{k+1} - 1$
= $2 \cdot 2^{k+1} - k - 3 = 2^{k+2} - (k+1) - 2$ = R.H.S as required.

(2) Step 2: Assume true for n = k i.e. $\sum_{r=1}^{k} r(r!) = (k+1)! - 1$ Required to prove that it is also true for $\sum_{r=1}^{k+1} r(r!) = (k+2)! - 1$

Proof: L.H.S. =
$$\sum_{r=1}^{k} r(r!) + (k+1)(k+1)! = (k+1)! - 1 + (k+1)(k+1)!$$

= $(k+1)!(1+k+1) - 1 = (k+1)!(k+2) - 1$
= $(k+2)! - 1 = R.H.S.$

(3) Step 2: Assume true for n = k i.e. $\sum_{r=1}^{k} (2^{r-1} + 3^{r-1}) = (2^k - 1) + \frac{1}{2}(3^k - 1)$

Required to prove that it is also true for n = k + 1 i.e.

$$\sum_{r=1}^{k+1} (2^{r-1} + 3^{r-1}) = (2^{k+1} - 1) + \frac{1}{2} (3^{k+1} - 1)$$

Proof: L.H.S. =
$$\sum_{r=1}^{k} (2^{r-1} + 3^{r-1}) + (2^{k+1-1} + 3^{k+1-1})$$

= $(2^k - 1) + \frac{1}{2}(3^k - 1) + (2^k + 3^k) = 2 \cdot 2^k - 1 + \frac{1}{2}3^k + 3^k - \frac{1}{2}$
= $(2^{k+1} - 1) + \frac{3 \cdot 3^k}{2} - \frac{1}{2} = (2^{k+1} - 1) + \frac{3^{k+1}}{2} - \frac{1}{2}$
= $(2^{k+1} - 1) + \frac{1}{2}(3^{k+1} - 1) = R.H.S.$

TYPE 2:

(1) Step 2: Assume true for n = k i.e. $3^k + 5 = 8M$ where M is an integer.

Required to prove that it is also true for n = k + 2, (n is odd)

i.e. $3^{k+2} + 5 = 8N$ where N is another integer.

Proof: L.H.S. =
$$3^k$$
. $3^2 + 5 = 9(8M - 5) + 5$
= $8.9M - 45 - 5 = 8(9M - 5) = 8N = R.H.S.$

(2) Step 2: Assume true for n = k i.e. $3^k + 7^{k+1} = 4M$ where M is an integer.

Required to prove that it is also true for n = k + 2

i.e. $3^{k+2} + 7^{k+2} = 4N$ where N is another integer.

Proof: L.H.S. =
$$3^k . 3^2 + 7^{k+1} . 7 = 9 . 3^k + 7 . 7^{k+1}$$

= $9(4M - 7^{k+1}) + 7 . 7^{k+1} = 4 . 9M - 16 . 7^{k+1}$
= $4(9M - 4 . 7^{k+1}) = 4N$ where N is another integer.
= R.H.S.

TYPE 3:

(1) To prove that $5^n \ge 3n + 7 \Rightarrow 5^n - 3n - 7 \ge 0$

Step 1: Let
$$n = 2$$
, L.H.S.= $5^2 - 6 - 7 = 12 > 0$
True for $n = 2$.

Step 2: Assume true for n = k i.e. $5^k - 3k - 7 \ge 0$

Prove also true for
$$n = k + 1$$
 i.e. $5^{k+1} - 3(k+1) - 7 \ge 0$

L.H.S. =
$$5^k.5 - 3k - 3 + 7 = 5(5^k - 3k - 7) + 12k + 39 \ge 0$$

(2) To prove that $5^n - 4^n - 23 > 0$ for $n \ge 3$.

Step 1: Prove true for
$$n = 3$$
 i.e. $5^3 - 4^3 - 23 = 38 > 0$

Step 2: Assume true for
$$n = k$$
 i.e. $5^k - 4^k - 23 > 0$

Prove also true for
$$n = k + 1$$
 i.e. $5^{k+1} - 4^{k+1} - 23 > 0$

L.H.S. =
$$5.5^k - 4.4^k - 23 = 5(5^k - 4^k - 23) + 4^k + 92 > 0$$

TYPE 4:

(1) (a)
$$u_3 = 4(u_2 - u_1) = 4(8 - 2) = 24$$
 and $u_4 = 4(u_3 - u_2) = 4(24 - 8) = 64$

(b) Let
$$n = 1$$
, $u_1 = 1(2^1) = 2$ is true.

Let
$$n = 2$$
, $u_2 = 2(2^2) = 8$ is true.

Let
$$n = 3$$
, $u_3 = 3(2^3) = 24$ is true.

Let
$$n = 4$$
, $u_4 = 4(2^4) = 64$ is also true.

(c) Assume true for n = k, i.e. $u_k = k(2^k)$.

Prove true for
$$n = k + 1$$
, i.e. $u_{k+1} = (k+1)(2^{k+1})$

Proof:
$$u_{k+1} = 4(u_k - u_{k-1}) = 4[k.2^k - (k-1)2^{k-1}]$$

$$= 4[k.2^k - k.2^{k-1} + 2^{k-1}] = k.2^k.2^2 - k.2^{k-1}.2^2 + 2^{k-1}.2^2$$

$$= 2k.2^{k+1} - k.2^{k+1} + 2^{k+1} = 2^{k+1}(2k - k + 1)$$

$$= 2^{k+1}(k+1) = \text{R.H.S.}$$

(2) Step 1: $u_2 = 3^2 - 2^2 = 5$ which is true.

Step 2: Assume for
$$n = k$$
 i.e. $u_k = 3^k - 2^k$ and for $n = k + 1$ i.e. $u_{k+1} = 3^{k+1} - 2^{k+1}$
Prove true for $n = k + 2$ i.e. $u_{k+2} = 3^{k+2} - 2^{k+2}$

Proof: L.H.S. =
$$u_{k+2} = 5.u_{k+1} - 6.u_k = 5(3^{k+1} - 2^{k+1}) - 6(3^k - 2^k)$$

= $15.3^k - 6.3^k - 10.2^k + 6.2^k = 9.3^k - 4.2^k$

$$=3^2.3^k-2^2.2^k=3^{k+2}-2^{k+2}=R.H.S.$$