NAME:

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

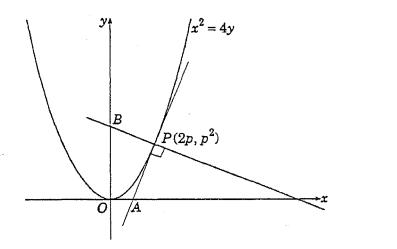
YEAR 12 - EXT.1 MATHS

REVIEW TOPIC (SP3) PARAMETRIC EQUATIONS OF THE PARABOLA

6

EXERCISES:

HSC '99 (4) (b)



The diagram shows the graph of the parabola $x^2 = 4y$. The tangent to the parabola at $P(2p, p^2)$, p > 0, cuts the x axis at A. The normal to the parabola at P cuts the y axis at B.

Derive the equation of the tangent AP. (i)

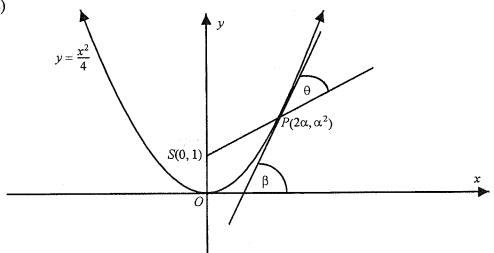
$$y = px - p^2$$

Show that *B* has coordinates $(0, p^2 + 2)$. (ii)

(iii) Let *C* be the midpoint of *AB*. Find the Cartesian equation of the locus of *C*.

HSC 95

(3)(c)



Let $P(2\alpha, \alpha^2)$ be a point on the parabola $y = \frac{x^2}{4}$, and let S be the point (0, 1). The tangent to the parabola at P makes an angle of β with the x axis. The angle between SP and the tangent is θ . Assume that $\alpha > 0$, as indicated.

(i) Show that $\tan \beta = \alpha$.

(ii) Show that the gradient of SP is $\frac{1}{2} \left(\alpha - \frac{1}{\alpha} \right)$.

(iii) Show that $\tan \theta = \frac{1}{\alpha}$.

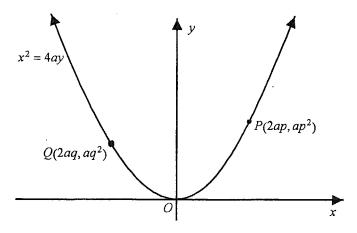
(iv) Hence find the value of $\theta + \beta$.

$$\theta + \beta = 90^{\circ}$$

(v) Find the coordinates of P if $\theta = \beta$.

HSC 94

(3) (d) Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.



(i) Show the equation of the tangent to the parabola at P is $y = px - ap^2$.

(ii) The tangent at P and the line through Q parallel to the y-axis intersect at T. Find the coordinates of T.

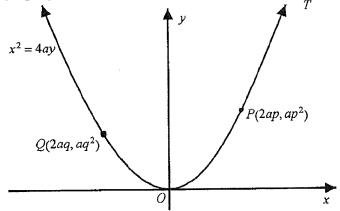
(iii) Write down the coordinates of M, the midpoint of PT.

(a(p+q),apq)

(iv) Determine the locus of M when pq = -1.

HSC '93

(7) (a) Consider the parabola $4ay = x^2$ where a > 0, and suppose the tangents at $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ intersect at the point T. Let S(0, a) be the focus of the parabola.



(i) Find the coordinates of T. (You may assume the equation of the tangent at P is $y = px - ap^2$.

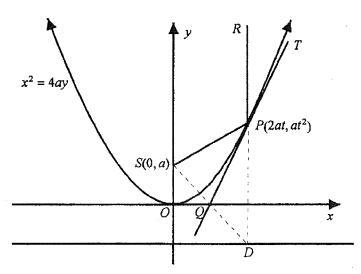
(ii) Show that $SP = a(p^2 + 1)$

(iii) Suppose P and Q move on the parabola in such a way that SP + SQ = 4a. Show that T is constrained to move on a parabola.

 $\boxed{\text{Locus is } x^2 = 2a^2 + 2ay}$

HSC '92

(5) (a)



The diagram shows the parabola $x^2 = 4ay$ with focus S(0, a) and directrix y = -a. The point $P(2at, at^2)$ is an arbitrary point on the parabola and the line PR is drawn parallel to the y-axis, meeting the directrix at D. The tangent QPT to the parabola at P intersects SD at Q.

(i) Explain why SP = PD.

(ii) Find the gradient m_1 of the tangent at P.

 $m_1 = t$

(iii) Find the gradient m_2 of the line SD.

(v) Prove that $\angle RPT = \angle SPQ$.