C.E.M.TUITION

Review Topic: Applications of Geometrical Properties

Year 12 - Mathematics

PHONE: 9666-3331 FAX: 9316-4996

MOBILE: 0412 880 475

In the figure, $B\hat{E}F = 110^{\circ}$, $E\hat{B}C = 40^{\circ}$, $A\hat{D}E = 45^{\circ}$. AC, FD and EB are straight lines. Find the size of $B\hat{C}A$.

Give reasons.

2. In the diagram, AB = AD, BC = BD, $AB \parallel DC$ and $D\hat{A}B = 70^{\circ}$.

Find the size of \hat{ABC} , giving reasons.

In the figure, $AB \parallel CD$, $EG \perp GL$, EF = FH, and $\angle LEG = 54^{\circ}$.

Calculate, giving reasons, the size of:

- (a) $G\hat{H}D$
- (b) $E\hat{F}L$

4.

In the figure BC is a straight line, AD = DC, AD = BD and $\hat{CAD} = 29^{\circ}$.

Find x, giving reasons.

 In the figure, ABCDEF is a regular hexagon. DC and AB are produced to P and N respectively.

Deduce the size of:

- (a) \hat{FAB}
- (b) NMP, giving full reasons to justify your answer.

6.

In the figure, ABCD is a rhombus whose diagonals intersect at E.

If $B\hat{C}D = 112^{\circ}$, find the size of:

- (a) $A\hat{E}D$
- (b) $A\hat{B}D$

(Give reasons.)

 $D\hat{E}A = 70^{\circ}$ (supplementary to $B\hat{E}F$) $C\hat{A}B = 115^{\circ}$ (exterior angle of triangle ADE) $B\hat{C}A = 180^{\circ} - (40 + 115)^{\circ}$ (angle sum of ΔABC) $\therefore B\hat{C}A = 25^{\circ}$.

 $\therefore A\hat{B}C = 125^{\circ}.$

 $A\hat{B}D = B\hat{D}A = 55^{\circ}$ (base angles of isosceles $\triangle ABD$) $C\hat{D}B = 55^{\circ}$ (alternate to $A\hat{B}D$ and $AB \parallel DC$) $D\hat{C}B = C\hat{D}B = 55^{\circ}$ (base angles of isosceles $\triangle BCD$) $D\hat{B}C = 70^{\circ}$ (angle sum of $\triangle BCD$) $A\hat{B}C = A\hat{B}D + D\hat{B}C$ $= 55^{\circ} + 70^{\circ}$ $= 125^{\circ}$,

(a) $F\hat{H}G = 54^{\circ}$ (alternate to $L\hat{E}G$ and $AB \parallel CD$) $G\hat{H}D = (180 - 54)^{\circ}$ (supplementary to $F\hat{H}G$) $\therefore G\hat{H}D = 126^{\circ}.$

(b) $G\hat{L}E = 36^{\circ}$ (angle sum of ΔGLE) $H\hat{E}F = F\hat{H}G = 54^{\circ}$ (base angle of isosceles ΔEFH) $E\hat{F}H = 72^{\circ}$ (angle sum of ΔEFH) $L\hat{F}H = 36^{\circ}$ (alternate to $G\hat{L}E$ and $AB \parallel CD$) $E\hat{F}L + L\hat{F}H = E\hat{F}H$ $\therefore E\hat{F}L + 36^{\circ} = 72^{\circ}$ $\therefore E\hat{F}L = 36^{\circ}$.

 $D\hat{C}A = 29^{\circ}$ (base angles of isosceles $\triangle ADC$) $B\hat{D}A = 58^{\circ}$ (exterior angle of $\triangle ADC$) $A\hat{B}D = D\hat{A}B = 61^{\circ}$ (base angles of isosceles $\triangle ABD$) $\therefore x = 61$.

5. (a)
$$F\hat{A}B = \frac{(2n-4)\times 90^{\circ}}{n}$$

[angle in a regular hexagon (n = 6)]

$$\therefore \hat{FAB} = \frac{(2 \times 6 - 4) \times 90^{\circ}}{6}$$
$$= 120^{\circ}.$$

(b) $A\hat{B}C = F\hat{A}B$ (angle in a regular hexagon) $\therefore A\hat{B}C = 120^{\circ}$. $B\hat{C}D = 120^{\circ}$ (angle in a regular hexagon) $C\hat{B}M = 60^{\circ}$ (supplementary to $A\hat{B}C$) $M\hat{C}B = 60^{\circ}$ (supplementary to $B\hat{C}D$) $B\hat{M}C = 60^{\circ}$ (angle sum of ΔCBM) $N\hat{M}P = 60^{\circ}$ (vertically opposite to $B\hat{M}C$) $\therefore N\hat{M}P = 60^{\circ}$.

6. (a)
$$A\hat{E}D = 90^{\circ}$$

(diagonals of a rhombus bisect at right angles).

(b)
$$A\hat{B}C = (180 - 112)^{\circ}$$
 (co-interior to $= 68^{\circ}$, $B\hat{C}D$ and $AB \parallel DC$)
$$A\hat{B}D = \frac{1}{2}A\hat{B}C$$
 (diagonals of rhombus bisect the angles through which they pass)
$$= 34^{\circ}$$
,

 $\therefore A\hat{B}D = 34^{\circ}.$