. .

Mathematics	Question	Series 1 / Item: 29
Name:		Date:
Topic:	APPLICATIONS OF INTEGRATION	
Question 1	[3 + 1 + 3 = 7 marks]	
The acce	eleration of a particle undergoing rectilinear motion is given by $a = \frac{2}{\sqrt{t+4}} \text{ ms}^{-2}.$	
The part Find:	icle has a velocity of 12 ms ⁻¹ when t = 5	
(a)	the velocity when t = 12.	
(b)	if and when the particle is at rest.	
	 	
(c)	the distance covered by the particle in the first 5 seconds.	

Question 2 [1 + 1 + 1 + 2 = 5 marks]

The velocity - time graph below shows the journey taken by two different cyclists, A and B, along the same straight stretch of road.

Use the v - t graph and the fact that they meet after 20 minutes to find:

(a) the acceleration of A between t = 0 and t = 5.

(b) the displacement of B from his starting position after 20 mins.

(c) the total distance travelled by A.

(d) the distance apart the cyclists were initially.
Question 3 [4 marks]
A region is bounded by the curve $y = ln(x+1)$, the line $x = 1$ and the $x - axis$. Find the volume of the solid of revolution formed when this region is rotated about the $y - axis$.

Question

Mathematics

Series 1 / Item: 29

Question 4 [3 + 3 + 1 + 2 + 1 = 10 marks]

A train slows down with an acceleration which is proportional to its velocity.

(a) Show that the velocity at any time t is given by $v(t) = v_0 e^{kt}$, where v_0 is the initial velocity.

Given that initially the particle has a velocity of 60 km h^{-1} , and that the velocity after 5 seconds is 40 km h^{-1} , then:

(b) show that the value of k is $\frac{1}{5} \ln \frac{2}{3}$.

Hence, find:

- (c) the velocity after 10 seconds.
- (d) the time taken to reduce the velocity to 20 km h^{-1}
- (e) the acceleration after 5 seconds.

(7 + 5 + 4 + 10 + 4 = 30 marks)

Question 5	[2 + 2]	= 4	marks]
------------	---------	-----	--------

A particle The partic	$v = 6\cos 3t$ cle is initially at the origin.
(a)	Find the displacement at any time t.
(b)	Show that this particle is undergoing Simple Harmonic Motion.
(b)	Show that this particle is undergoing Simple Harmonic Motion.
(b)	Show that this particle is undergoing Simple Harmonic Motion.
(b)	Show that this particle is undergoing Simple Harmonic Motion.
(b)	
(b)	Show that this particle is undergoing Simple Harmonic Motion.
(b)	
(b)	

Name:

Date:

Topic:

APPLICATIONS OF INTEGRATION

Question 1

(a)
$$v(t) = \int \frac{2dt}{\sqrt{t+4}} = 4\sqrt{t+4} + c$$
 [1]

when
$$t = 5$$
, $v = 12 \implies c = 0$ [1]

$$v(12) = 16 \text{ ms}^{-1}$$
 [1]

(b) particle is never at rest since
$$4\sqrt{t+4} \neq 0$$
 [1]

(c) distance travelled =
$$\int_{0}^{5} 4\sqrt{t+4} dt$$
 [1]

$$= \frac{8}{3}(t+4)^{\frac{3}{2}} \Big]_0^5$$
 [1]

$$= 50\frac{2}{3} \text{ m}$$
 [1]

Question 2

(a)
$$a = \frac{\text{rise}}{\text{run}} = 0.4 \text{ km min}^{-2}$$
 [1]

(b)
$$x = -10 + 15 = 5 \text{ km}$$
 to the right of his starting point. [1]

(c) dist. =
$$5 + 14 + 8 = 27 \text{ km}$$
 [1]

Question 3

$$V_{y} = \pi \int_{0}^{\ln 2} 1 dy - \pi \int_{0}^{\ln 2} (e^{y} - 1)^{2} dy$$

$$= \pi \int_{0}^{\ln 2} 1 dy - \pi \int_{0}^{\ln 2} (e^{2y} - 2e^{y} + 1) dy$$
[1]

$$= \pi \int_{0}^{\ln 2} (2e^{y} - e^{2y}) dy$$
 [1]

$$= \pi \left[2e^{y} - \frac{1}{2}e^{2y} \right]_{0}^{\ln 2}$$
 [1]

$$= \pi \left((4-2) - (2-\frac{1}{2}) \right) = \frac{\pi}{2}$$
 [1]

Question 4

(a)
$$\frac{dv}{dt} = kv$$
 [1]

$$|\ln |v| = kt + c$$
 [1]

$$v = e^{kt+c}$$
 [1]

$$v = V_0 e^{kt}$$

(b)
$$40 = 60e^{5k}$$
 [1]
 $lne^{5k} = ln\frac{2}{3}$ [1]
 $5k = ln\frac{2}{3}$ [1]

$$k = \frac{\ln \frac{2}{3}}{5 \ln \frac{2}{3}}$$

(c)
$$v = 60e^{\frac{1}{5}\ln\frac{2}{3}(10)} = 26.7 \text{ (1dec.pl)}$$
 [1]

(d)
$$20 = 60e^{\frac{1}{5}\ln\frac{2}{3}t}$$
 [1]
 $t = 13.6 \text{ (1dec.pl)}$

(e)
$$a = kv(5) = \frac{1}{5} \ln \frac{2}{3} 40 = -3.2 (1 \text{dec.pl})$$
 [1]

Question 5

(a)
$$x = 2\sin 3t + c$$
 [1]
when $t = 0$, $x = 0 \Rightarrow c = 0$ [1]

∴
$$x = 2\sin 3t$$

(b) $a = -18\sin 3t$ [1]
 $= -9 \{2\sin 3t\}$
 $= -n^2x$ [1]
∴ S.H.M.

(7 + 5 + 4 + 10 + 4 = 30 marks)