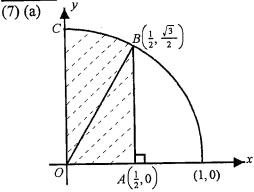
NAME :

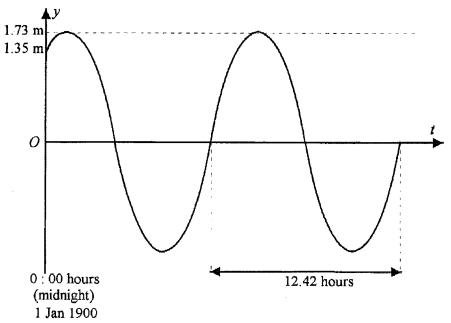

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – ADVANCED MATHS REVIEW TOPIC (SP1) CIRCULAR FUNCTIONS

PAST HSC EXAMINATION QUESTIONS:

HSC '93

The diagram shows the first quadrant of the circle $x^2 + y^2 = 1$. The point A has coordinates $\left(\frac{1}{2},0\right)$ and AB is perpendicular to the x-axis.


(i) What is the exact value of $\angle COB$?

 $\frac{\pi}{6}$

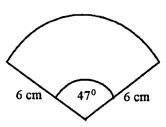
(ii) Show that the exact value of the shaded area OABC is $\frac{2\pi + 3\sqrt{3}}{24}$.

(9) (b)

The diagram shows the tidal effect due to the Moon at Port Hedland on 1 January 1900. The water level can be approximated by a sine curve of the form $y = A \sin(at + b)$ where y is the water level i metres measured as on the diagram and t is the time in hours after 0:00 hours.

(i) Find the amplitude A.

1.73 m

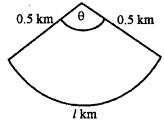

(ii) Estimate b by letting t = 0.

0.9 rad

(iii) Estimate a.

HSC 92

(5)(a)


The diagram shows a sector of a circle. Find the area of this sector. Give your answer to the nearest square centimetre.

15 cm²

HSC 91

(5)(c)

Figure not to scale

A car travels at 45 km/hr on a circular curve whose radius is 0.5 km.

(i) Find the distance, *l* km, that the car travels in one minute.

0.75 km

(ii) Calculate the size of the angle θ through which the car turns in one minute. Give your answer to the nearest degree.

HSC '90

- (9) (a) Consider the function given by $y = \sin^2 x$.
 - (i) Copy and complete the following table in your examination booklet. (Note that x is measure in radians.)

x	0	<u>π</u> 4	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
у	0				

 $\frac{1}{2}$, 1, $\frac{1}{2}$, 0

(ii) Apply Simpson's rule with five function values to find an

approximation to
$$\int_0^{\pi} \sin^2 x \, dx$$

HSC 89

(10)

(b) A cam is formed with cross-section as shown in the figure.

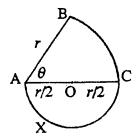


Figure not to scale

The cross-section consists of a semi-circle AXC centre O and radius r/2 and a sector ABC of radius r, centre A and angle θ .

(i) What is the perimeter ABCX of the cam in terms of r and θ .?

$$r + r\theta + \frac{\pi r}{2}$$

(ii) If the area of the cross-section of the cam is 1 square unit, show that the perimeter P is given by

$$P = \frac{2}{r} + r (1 + \frac{\pi}{4}).$$

(iii) Show that the least perimeter occurs when $r^2 = \frac{8}{\pi + 4}$ and calculate the value of θ to the nearest degree.

<u>HSC'87</u> (7) (i) (a) Sketch the graph of $y = \cos 2\theta$, for $0^0 \le \theta \le 180^0$.

(b) Find all the values of θ , for $0^0 \le \theta \le 180^0$ such that $\cos 2\theta = \frac{1}{2}$.