NAME:

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – ADVANCED MATHS

REVIEW TOPIC (SP1) COORDINATE GEOMETRY

Mixed exercises:

- $\overline{(1) \ O(0,0), P(1,0), Q(2,1)}$ are the vertices of a triangle. Find:
 - (a) The equation of the line PQ in general form.

x - y - 1 = 0

- (b) The equation of the line through O
 - (i) parallel to PQ.

x - y = 0

(ii) perpendicular to PQ.

(2) Find the equation of the line through the point (5,2) which is perpendicular to the line 5x + 2y = 20.

$$2x - 5y = 0$$

(3) The line PQ is perpendicular to the line x - y - 1 = 0, meets the line in the point P and intersects the y-axis in Q(0,5). Find the coordinates of P. (Hint: draw a sketch).

(4) Find the coordinates of the foot of the perpendicular from the point (-5,4) to the line 3x + y - 21 = 0.

C.E.M. – YEAR 11 – REVIEW OF COORDINATE GEOMETRY – SP1

(5) Show that the triangle whose sides satisfy 2x - y = 0, x + 2y = 5, x - 3y = 20 is a right triangle.

(6) Find the equation of the line through the intersection of the lines x+y-3=0 and 3x+4y-1=0 and perpendicular to the line 3x-4y+15=0.

$$k = -\frac{1}{7}$$
; $4x + 3y - 20 = 0$

(7) Find the equations of the lines given by (2x-y+4)+k(3x+2y-9)=0 when k takes the values -1,0,1. Verify that these three lines are concurrent.

(8) Find the (i) midpoint and (ii) the distance between these pairs of points:

(a)
$$A(4,3)$$
 and $B(7,5)$

$$(i) \left(\frac{11}{2}, 4\right) (ii) \sqrt{13}$$

(b) P(-2,-3) and Q(-5,-4)

$$(i) \left(-\frac{7}{2}, -\frac{7}{2}\right) (ii) \sqrt{10}$$

(9) Find the perpendicular distance from the point (6,-5) to the line 4x-3y-9=0.

6

(10) Determine whether the given points (3,2) and (7,3) lie on the same or opposite sides of the given line 2x-5y+3=0.

C.E.M. – YEAR 11 – REVIEW OF COORDINATE GEOMETRY – SP1 (11) Show that the line 4x + 3y - 8 = 0 is a tangent to the circle with centre (-2, -3) and radius 5 units.

(12) Find the distance between these parallel lines:

$$5x-12y+21=0$$
 and $5x-12y-5=0$.

C.E.M. – YEAR 11 – REVIEW OF COORDINATE GEOMETRY – SP1 (13) *ABCD* is a rhombus where A(0,-1), B(3,-2) and C(4,1) are three vertices. Find the coordinates of the fourth vertex.

PAST HSC QUESTIONS:

HSC 07

(1)

(f) Find the equation of the line that passes through the point (-1, 3) and is perpendicular to 2x + y + 4 = 0.

In the diagram, A, B and C are the points (10, 5), (12, 16) and (2, 11) respectively.

Copy or trace this diagram into your writing booklet.

(i) Find the distance AC.

1

(ii) Find the midpoint of AC.

10

(iii) Show that $OB \perp AC$.

0,8)

(iv) Find the midpoint of OB and hence explain why OABC is a rhombus.

2

(v) Hence, or otherwise, find the area of OABC.

HSC '99

(2) (b)

The diagram show the points A(-2,0), B(3,5) and the point C which lies on the x axis. The point D also lies on the x axis such that BD is perpendicular to AC.

(i) Show that the gradient of AB is 1.

(ii)Find the equation of the line AB.

(iii) What is the size of $\angle BAC$?

45°

(iv) The length of BC is 13units. Find the length of DC.

12 units

(v) Calculate the area of $\triangle ABC$.

42.5 sq. units

(vi) Calculate the size of $\angle ABC$ to the nearest degree.

The diagram shows points A(1,0), B(4,1) and C(-1,6) in the Cartesian plane. Angle ABC is θ .

Copy or trace this diagram into your Writing Booklet.

(a) Show that A and C lie on the line 3x + y = 3.

(b) Show that the gradient of
$$AB$$
 is $\frac{1}{3}$.

(c) Show that the length of AB is $\sqrt{10}$ units.

1

(d) Show that AB and AC are perpendicular.

1

(e) Find $\tan \theta$.

(f) Find the equation of the circle with centre A that passes through B.

 $x^2 + y^2 - 2x - 9 = 0$

(g) The point D is not shown on the diagram. The point D lies on the line 3x + y = 3 between A and C, and AD = AB. Find the coordinates of D.

2

(0,3)

(h) On your diagram, shade the region satisfying the inequality $3x + y \le 3$.

HSC '97

 $\overline{(3)}$ (b) Let A and B be the points (0, 1) and (2, 3) respectively.

6

(i) Find the coordinates of the midpoint of AB.

(1, 2)

(ii) Find the slope of the line AB.

1

(iii) Find the equation of the perpendicular bisector of AB.

x + y - 3 = 0

(iv) The point P lies on the line y = 2x - 9 and is equidistant from A and B. Find the coordinates of P.

HSC '96

(2)

The line l is shown in the diagram. It has equation x + 2y + 8 = 0 and cuts the x axis at A.

The line k has equation $y = -\frac{1}{2}x + 6$, and is not shown on the diagram. Copy and trace the diagram.

(a) Find the coordinates of A.

1

-8,0)

(b) Explain why k is parallel to l.

(c) Draw the graph of k on your diagram, indicating where it cuts the axes.

- 1
- (e) Write down a pair of inequalities which define the region between k and l.

(d) Shade the region $x+2y+8 \le 0$ on your diagram.

2

$$\boxed{\frac{1}{2}x + y - 6 < 0 \text{ and } x + 2y + 8 > 0}$$

(f) Show that P(8,2) lies on k.

(g) Find the perpendicular distance from P to l.

2

 $4\sqrt{5}$

(h) Q(4,-6) lies on l. Show that Q is the point on l which is closest to P.