NAME:



## Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au



### YEAR 12 - ADVANCED MATHS

# REVIEW TOPIC (SP1) DISPLACEMENT, VELOCITY & ACCELERATION

Marks

 $\overline{(7)(b)}$  A particle P is moving along the x-axis. Its position at time t seconds is given by

7

 $x=2\sin t-t, t\geq 0.$ 

(i) Find an expression for the velocity of the particle.

 $v=2\cos t-1$ 

(ii) In what direction is the particle moving at t = 0?

To the right

(iii) Determine when the particle first comes to rest.

 $\frac{\pi}{3}$  S

(iv) When is the acceleration negative for  $0 \le t \le 2\pi$ ?

 $0 < t < \pi$ 

(v) Calculate the total distance travelled by the particle in the first  $\pi$  seconds.

(6) (a) A particle P moves along a straight line for 8 seconds, starting at the fixed point S at time t = 0. At time t seconds, P is x(t) metres to the right of S. The graph of x(t) is shown in the diagram.

5



(i) At approximately what times is the velocity of the particle equal to 0?

t = 1, 5.5 s

(ii) At approximately what time is the acceleration of the particle equal to 0?

t = 3 s

(iii) At approximately what time is the distance from S greatest?

t = 5.5 s

(iv) At approximately what time is the particle moving with the greatest velocity?

 $t = \pi$  or  $2\pi$ 

| Marks    |           |
|----------|-----------|
| 8        |           |
| nary?    |           |
| l to 0 ? | $t = \pi$ |
|          |           |

(iii) Carefully sketch the graph of  $x = t + \sin t$  for  $0 < t < 3\pi$ . Clearly label any stationary points and any points of inflection. (9)(b)

7



A pen moves along the x-axis, ruling a line. The diagram shows the graph of the velocity of the tip of the pen as a function of time.

The velocity, in centimetres per second, is given by the equation

$$v = 4t^3 - 24t^2 + 20t,$$

where t is the time in seconds. When t = 0, the tip of the pen is at x = 3. That is, the tip is initially 3 centimetres to the right of the origin.

(i) Find an expression for x, the position of the tip of the pen, as a function of time.

 $x = t^4 - 8t^3 + 10t^2 + 3$ 

(ii) What feature will the graph of x as a function of t have at t = 1?

(iii) The pen uses 0.05 milligrams of ink per centimetre travelled. How much ink is used between t = 0 and t = 2?

(9) Two particles P and Q start moving along the x-axis at time t = 0 and never meet. Particle P is initially at x = 4 and its velocity v at time t is given by v = 2t + 4.

The position of particle Q is given by  $x = 1 + 3 \log_e(t+1)$ . The diagram shows the graph of  $x = 1 + 3 \log_e(t+1)$ .



(a) Find an expression for the position of P at time t.

 $x=(t+2)^2$ 

(b) Copy the diagram into your Writing Booklet and, on the same axes, draw the graph of the function found in part (a).

(c) P and Q are joined by an elastic string and M is the midpoint of the string. Show that the position of M at time t is given by

$$x = \frac{1}{2} \left[ t^2 + 4t + 3 \log_e(t+1) + 5 \right].$$

$$x = \frac{1}{2}[t^2 + 4t + 3\ln(t+1) + 5]$$

(d) Find the time at which the acceleration of M is zero.

(e) Find the minimum distance between P and Q.

 $x_{\min} = 3 \text{ units.}$ 

#### HSC '95

(10) (b) Two particles A and B start moving on the x-axis at time t = 0. The position of particle A at time t is given by

$$x = -6 + 2t - \frac{1}{2}t^2$$

and the position of particle B at time t is given by

$$x = 4 \sin t$$

(i) Find expressions for the velocities of the two particles.

(5) (c) A particle moves along a straight line so that its distance x metres from a fixed point O is given by

$$x = 6 - 2t + 8\ln(t+3)$$

where the time t is measured in seconds.

(i) What is the position of the particle when t = 0?

14.79 m (to 2 dp)

(ii) Find expressions for the velocity and acceleration of the particle at time t.

$$v = -2 + \frac{8}{t+3}$$
;  $a = -\frac{8}{(t+3)^2}$ 

(iii) Find the time t when the velocity of the particle is zero.

- (9)(a) 'The car moved away from where it had stopped, its speed increasing at a constant rate, and after exactly 10 seconds it was travelling at 25 m/s. It continued at a constant speed for a further 20 seconds. Then the brakes were applied causing it to slow down at a constant rate, so that 5 seconds later it was travelling at 5 m/s.'
  - (i) Let the car's speed be v m/s. Graph v as a function of time t, measured in seconds.

(ii) Let the distance travelled by the car be s metres from where it had stopped. On a separate diagram, graph s as a function of t.





A particle moves in a straight line and the above graph shows the distance x of the particle from a fixed point at time t.

(i) Is the particle moving faster at time  $t_1$  or at time  $t_2$ ? Why?

(ii) What is the velocity at time t = 0? Why?

(iii) Sketch the graph of the velocity v as a function of t.