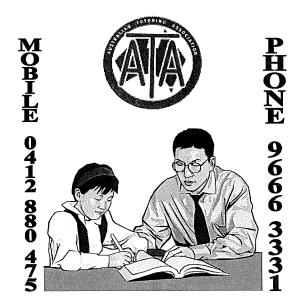
NAME:

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au



YEAR 12 – MATHEMATICS

SPECIMEN PAPER 2
TOPIC: GROWTH & DECAY

2

AMP 2002 Q10

(c) The diameter of a tree (D cm), t years after the start of a particular growth period is given by:

$$D = 80e^{kt}$$
.

(i) Show that
$$\frac{dD}{dt} = kD$$
 where k is a constant.

(ii) If k = 0.018, how long will it take for the diameter of the tree to measure 90cm (to the nearest whole number)?

ASCHAM 2001 Q8

b) The amount M grams of a chemical is given by

 $M = M_0 e^{-kt}$ where M_0 and k are positive constants and time t is measured in years.

i) Show that M satisfies the equation
$$\frac{dM}{dt} = -kM$$
 (1)

ii) Find k (in exact form) if 200 grams of the chemical decomposes to 150 grams at the end of 2 years. (2)

iii) Find the amount of the chemical which has decomposed by the end of 10 years (to the nearest gram.)

(2)

CSSA 2001 Q6

(b) The number N of bacteria in a colony is growing at a rate that is proportional to the current number. The number at time t hours is given by

 $N = N_0 e^{kt}$ where N_0 and k are positive constants.

(i) If the size of the colony doubles every half hour, find the value of k.

2

(ii) If the colony now contains 600 million bacteria, how long ago did the colony contain 3 million bacteria?

(iii) Show that the numbers of bacteria present at consecutive integer hours form a geometric sequence.

CSSA 2000 Q7

- (a) An experimental vaccine was injected into a cat. The amount, M millilitres, of vaccine present in the bloodstream of the cat, t hours later was given by $M = e^{-2t} + 3$.
 - (i) How much vaccine was initially injected into the cat?

(ii) At what rate was the amount of vaccine decreasing at the end of 3 hours?

(iii) Show that there will always be more than 3 millilitres of vaccine present in the cat's bloodstream.

(iv) Sketch the curve of $M = e^{-2t} + 3$ to show how the amount of vaccine present in the cat's bloodstream changes over time.

CSSA 2002 Q5

(c) The population P of a town is growing at a rate proportional to the town's current population. The population at time t years is given by $P = A e^{kt}$, where A and k are constants.

The population 20 years ago was 100 000 people and today the population of the town is 150 000 people.

(i) Find the value of A.

1

(ii) Find the value of k.

1

(iii) Find the population that will be present 20 years from now.

SYDNEY GRAMMAR 2000 Q9

- (a) The value \$V\$ of a car is given by the formula $V = Ce^{-kt}$, where C and k are constants and t is the time measured in years. Michael bought a car on June 30th 2001 which cost \$65,000 and which was worth \$55,000 after one year.
- $\begin{bmatrix} \mathbf{2} \end{bmatrix}$ (i) Evaluate the constants C and k.

(ii) Find the value of the car after 5 years. Give your answer correct to the nearest dollar.

[2] (iii) In which year will the value of the car fall below half its cost price for the first time?

SOLUTIONS

AMP 2002 Q10

(c) (i)
$$D = 80e^{kt}$$

$$\frac{dD}{dt} = 80e^{kt} \times k \text{ (but } D = 80e^{kt}) \checkmark$$

$$\therefore \frac{dD}{dt} = kD \checkmark$$

(ii)
$$90 = 80e^{0.018t}$$

 $\frac{90}{80} = e^{0.018t}$
 $\ln\left(\frac{9}{8}\right) = 0.018t$
 $6.54 = t$
7 years = t

ASCHAM 2001 Q8

b)
$$M = M_0 e^{-kt}$$

i) $\frac{dM}{dt} = M_0 \cdot -ke^{-kt}$
 $dt = -k M_0 e^{-kt}$
 $= -k M$.
ii) $M = 200 e^{-kt}$
 $M = 200 e^{-kt}$

CSSA 2001 Q6

(b) (i)
$$N = 2N_o \text{ when } t = 0.5$$

Solve $2N_o = N_o e^{0.5k}$
 $\Rightarrow e^{0.5k} = 2$
 $\Rightarrow 0.5k = \ln 2$
 $\Rightarrow k = \frac{\ln 2}{0.5} = 1.38629...$
 $600 = 3e^{1.386...t}$
 $\ln 200 = 1.386...t$
(ii) $\Rightarrow t = \frac{\ln 200}{1.386...}$
 $= 3.8219...h$

when
$$t = 0$$
, $N = N_o$
 $t = 1$, $N = N_o e^k$
 $t = 2$, $N = N_o e^{2k}$
(iii) $t = 3$, $N = N_o e^{3k}$
 $t = 4$, $N = N_o e^{4k}$
 $\frac{N_o e^{2k}}{N_o e^k} = \frac{N_o e^{3k}}{N_o e^{2k}} = \frac{N_o e^{4k}}{N_o e^{3k}} = \frac{N_o e^k}{N_o e^{4k}} = e^k$

CSSA 2000 Q7

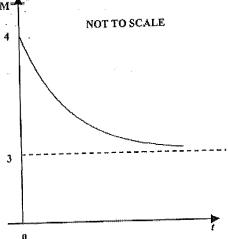
(a)

(i) $M = e^{-2(0)} + 3$ = 4 mL was initially injected into the cat. (ii) $\frac{dM}{dt} = -2e^{-2t}$ = 4 mL was initially injected into the cat. Construction of the American State of the Construction of the Cons

When t = 3, $\frac{dM}{dt} = -2e^{-2(3)} = -2e^{-6}$

 \therefore The amt of vaccine is decreasing at the rate of $2e^{-6}$ mL/h which is approximately 0.005 mL/h.

(iii) As $t \to \infty$, $e^{-2t} \to 0$, \therefore M $\to 3$. \therefore There will always be more than 3 mL of vaccine present in the cat's bloodstream.



CSSA 2002 Q5

(c)
$$P = Ae^{kt}$$

 $0 A = 100 000 (t = 0^{3}e^{kt} = 1)$ V
 $0 A = 100 000 = 100 000 e^{20k}$
 $e^{20k} = 1.5$
 $20k = 20 1.5$
 $k = 20 t = 1.5$
(III) $t = 40$
 $P = 100000 e^{40 \times 20 ln 1.5}$
 $= 100000 e^{2 ln 1.5}$
 $= 225000$
 $\therefore Pop^n in 20 years time$
will be 225000 V

SYDNEY GRAMMAR 2000 Q9

a) (i)
$$V = Ce$$

When $t = 0$, $V = 65000$

C = 65000

When $t = 1$, $V = 55000$ b.

 $55000 = 65000 e$
 $e^{-k} = \frac{11}{13}$
 $-k = \ln(\frac{11}{13})$
 $k = -\ln(\frac{11}{13})$
 $k = -\ln(\frac{11}{13})$

(ii) When $t = 5$, $-5k$
 $V = 65000 e$
 $= 28194

(iii) We need t such that

 $V \leq 65000$
 $= \frac{1}{2}$

(65000 $e^{-kt} \leq 65000$

: Car falls below half /