C.E.M.TUITION

Name:

HSC PROOFS

2/3 Unit

TUTOR: PETER OOI

PHONE: 9666-3331

FAX: 9316-4996

2 Unit

Sequence and Series

[1] A sequence in arithmetic progression is in the form a, a+d, a+2d, ..., a+(n-1)dShow that $S_n = \frac{n}{2}(a+l)$ where l = a+(n-1)d [2] A sequence in geometric progression is given by $a, ar, ar^2, ..., ar^{n-1}$. Show that $S_n = \frac{a(1-r^n)}{1-r}$

Differentiation from first principles

[1]
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, find $f'(x)$ if

[a]
$$f(x) = \sqrt{x}$$

[b]
$$f(x) = \frac{1}{x}$$

Quadratic equation

If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, show that

[a]
$$\alpha + \beta = -\frac{b}{a}$$
 [b] $\alpha\beta = \frac{c}{a}$

[b]
$$\alpha\beta = \frac{c}{a}$$

3 Unit: Cubic equation

Similarly, if α , β and γ are the roots of the cubic equation $ax^3 + bx^2 + cx + d = 0$ Show that:

[a]
$$\alpha + \beta + \gamma = -\frac{b}{a}$$
 [b] $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ [c] $\alpha\beta\gamma = -\frac{d}{a}$

Finance Maths

Compound interest: P: Principal, r%: rate of interest per period, n: periods. A_n : Amount at the end of n periods.

Show that
$$A_n = PR^n$$
 where $R = 1 + \frac{r}{100}$

Superannuation: Show that P invested at the beginning of each period for n periods at r% per period is

$$A_n = \frac{PR(R^n - 1)}{R - 1}$$

Time payments or annuities:

Show that the amount owing at the end of n periods on a loan of P over n periods at r% per period with a regular repayments (i.e instalments) of M is given by :

$$A_n = PR^n - \frac{M(R^n - 1)}{R - 1}$$

Parabola:

Show that the locus of P(x, y) whose distance from a fixed point S(0, a) equal to its distance from a fixed line y = -a is given by $x^2 = 4ay$.

3 Unit : Acceleration as a function of x

Show that
$$a = \frac{d}{dx} (\frac{1}{2}v^2)$$

3 Unit : Inverse Trigonometric Ratios

Show that [1] if
$$y = \sin^{-1} x$$
 then $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$

[2] If
$$y = \tan^{-1}x$$
, then $\frac{dy}{dx} = \frac{1}{1+x^2}$

3 Unit: Binomial theorem

Show that $\binom{n}{k} = \frac{n(n-1)(n-2)...(n-k+1)}{1 \times 2 \times 3 \times ... \times k}$ for $1 \le k \le n$ by mathematical induction.