NAME:

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – MATHEMATICS

REVIEW BOOKLET ON INTEGRATION, AREAS & VOLUMES

Rules for primitives: $\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ or } \int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$

1. Find the primitive functions, F(x), of the following:

(a)
$$x^3$$
 $F(x) =$

(b)
$$2x F(x) =$$

(d)
$$12x^2$$

(e)
$$\frac{x^4}{2}$$

(f)
$$x^{\frac{3}{2}}$$

$$\overline{(g)} \sqrt{x}$$

(h)
$$x^{-3}$$

$$(i) \frac{1}{r^2}$$

$$(j) \frac{6}{x^3}$$

2. Find the primitive functions, F(x), of the following:

(a)
$$x^2 + 6$$
 $F(x) =$

(b)
$$4x^2 - 2x + 5$$
 $F(x) =$

(c)
$$x^2 - 6x^3$$

(d)
$$(x+3)^6$$

*(e)
$$5\sqrt{x} - \frac{1}{3x^2}$$

*(f)
$$\frac{1}{(4x-1)^3}$$

Answers: (1)(a) $\frac{x^4}{4} + c$ (b) $x^2 + c$ (c) 5x + c (d) $4x^3 + c$ (e) $\frac{x^5}{10} + c$ (f) $\frac{2x^{\frac{3}{2}}}{5} + c$

(g)
$$\frac{2x^{\frac{3}{2}}}{3} + c$$
 (h) $-\frac{1}{2x^2} + c$ (i) $-\frac{1}{x} + c$ (j) $-\frac{3}{x^2} + c$ (2) (a) $\frac{x^3}{3} + 6x + c$

(b)
$$\frac{4x^3}{3} - x^2 + 5x + c$$
 (c) $\frac{x^3}{3} - \frac{3x^4}{2} + c$ (d) $\frac{(x+3)^7}{7} + c$ (e) $\frac{10x^{\frac{3}{2}}}{3} + \frac{1}{3x} + c$

(f)
$$-\frac{1}{8(4x-1)^2}+c$$

Rules for definite and indefinite integrals:

The definite integral given by $\int_a^b f(x)dx = [F(x)]_a^b$ where a, b are the lower and upper limits of the integral and F(x) is its primitive function.

(1) Find the following "indefinite integrals":

(a)
$$\int x^2 (5x-2) dx$$

(b)
$$\int (5x-4)^3 dx$$

(c)
$$\int \sqrt{8-3x} \ dx$$

(2) Evaluate the following "definite integrals":

(a)
$$\int_{4}^{5} (2x+3) dx$$

(b)
$$\int_{0}^{3} (4x-2) dx$$

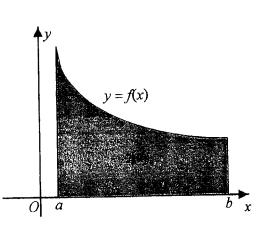
Answers: (1)(a) $\frac{5x^4}{4} - \frac{2x^3}{3} + c$ (b) $\frac{(5x-4)^4}{20} + c$ (c) $-\frac{2(8-3x)^{\frac{3}{2}}}{9} + c$ (2)(a) 12 (b) 12

	C^1
(2) (c)	$\int_{0}^{\infty} (y^{3} - y) dy$

 $(d) \int_{-1}^{3} \left(4 + 2x\right) dx$

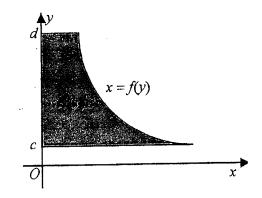
(e) $\int_{-1}^{1} (3t^2 + 1) dt$

 $(f) \int_0^3 x (3-x) dx$


<u>Answers:</u> $(2)(c) -\frac{1}{4} (d) 24 (e) 4 (f) 4.5$

Rules for finding area under the curve:

The area enclosed by the x-axis, the ordinates x = a, x = b and the curve is given by:

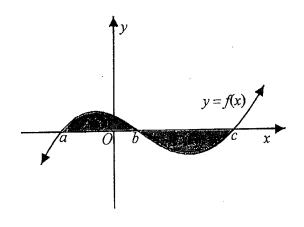

$$A(x) = \int_a^b f(x) \ dx = F(b) - F(a)$$

where F(x) is a primitive function of f(x).

The area enclosed by the y-axis, the lines y = c and y = d and the curve is given by:

$$A(y) = \int_{c}^{d} f(y)dy = F(d) - F(c)$$

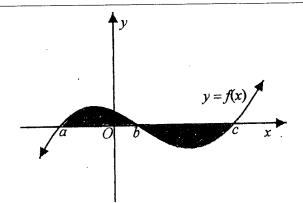
Case 1:


If the question clearly says to find the area then you must:

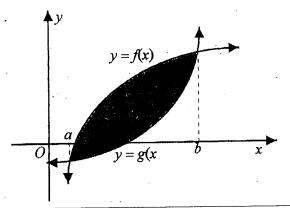
- (a) first draw a clear diagram and
- (b) then find the area enclosed as in this case to be:

$$A(x) + B(x)$$

$$= \int_{a}^{b} f(x)dx + \left| \int_{b}^{c} f(x)dx \right|$$


$$= F(b) - F(a) + |F(c) - F(b)|$$

Case 2:


If the question only says find the integral then there is **no need** to draw a diagram, and the answer is:

$$\int_{a}^{c} f(x).dx = F(c) - F(a)$$

The area enclosed by the two curves given by y = f(x) and y = g(x) is

$$A(x) = \int_{a}^{b} f(x) - g(x) dx$$
$$= [F(b) - G(b)] - [F(a) - G(a)]$$

Exercises: For all questions concerning areas, do remember to draw a sketch.

(1) Find the **area** represented by $A = \int_{1}^{6} \sqrt{x+3} \ dx$

Answers: (1) $12\frac{2}{3}$

-						******				
((2)	(a) Find	the x-interce	ots of	y = 4x	$-x^2$	and sk	etch the	curve.

(b) Find the **area** between the curve $y = 4x - x^2$ and the x-axis between the values x = 0 and x = 6.

Answers: (2)(a) Graph (b) $21\frac{1}{3}$

(3) (a) Find the points of intersection of the curves: $y = x^2 - 2x$ and y = 6 - x.

(b) Use this information to find the area enclosed by the two curves.

Answers: (3)(a) (-2,8), (3,3) Graphs (b) $20\frac{5}{6}$

Rules for finding volumes:

The volume of a solid rotated around the:

- (I) x-axis is given by $\pi \int_a^b y^2 dx = \pi \int_a^b [f(x)]^2 dx$
- (II) y-axis is given by $\pi \int_{c}^{d} x^{2} dy = \pi \int_{c}^{d} \left[f(y) \right]^{2} dy$

Exercises:

(1) Find the volume of revolution of the line y = 3x, when rotated around the x-axis between the values of x = 0 and x = 5.

(2) Find the volume generated when the curve $y = \sqrt{16 - x^2}$ is rotated around the x-axis between the values of x = 0 and x = 2.

Answers: (1) $375\pi \text{ units}^3$ (2) $\frac{88\pi}{3} \text{ units}^3$.

(3) Find the volume generated when the curve $y = x^2 - 1$ is rotated about the y-axis between the points (1,0) and (2,3).

(4) The region enclosed between the curve $y = \sqrt{16 - x^2}$ and the x axis between x = -2 and x = 2 is rotated through four right angles about the x axis. Show that the volume of the solid generated is $\frac{176\pi}{3}$.

Answers: (3) $\frac{15\pi}{2}$ units³

Rules for approximating areas using:

- (I) Trapezoidal rule: $A \approx \frac{h}{2} [y_0 + y_n + 2(y_1 + y_2 + ... + y_{n-1})]$
- (II) Simpson's rule: $A \approx \frac{h}{3} \left[y_0 + y_n + 4(y_1 + y_3 + ... + y_{2n-1}) + 2(y_2 + y_4 + ... + y_{2n}) \right]$

Exercises:

(1) (a) Use Trapezoidal rule with *three* function values to approximate the area under the curve $y = x^2 + x$ between the values of x = 0 and x = 2.

(b) Find the exact area given by $\int_0^2 (x^2 + x) dx$ and find the percentage error (to the nearest percent) in part (a) of this question.

Answers: (1)(a) 5 units² (b) $4\frac{2}{3}$ units²; 7% error

(2) (a) Use Trapezoidal rule with *four* equal strips (subintervals) to approximate the area under the curve $y = \frac{1}{\sqrt{1+x^2}}$ between x = 0 and x = 1. (Ans to 2 d.p.)

(b) Apply Simpson's rule to part (a) and estimate the percentage error between the two methods. (i.e. Error/Trapezoidal value x 100%)

(3) Use Simpson's rule with *seven* function values to approximate $\int_{1}^{4} f(x) dx$

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	0	0.4	0.7	0.9	1.1	1.25	1.4

Answers: (2)(a) 0.88 units^2 (b) 0.79 units^2 ; $10\% \text{ error } (3) \ 2\frac{8}{15} \text{ units}^2$